
VRIJE UNIVERSITEIT BRUSSEL

DOCTORAL THESIS

Synthetic Cognitive Development
of decentralized self-organizing systems

Author:
Viktoras Kabir VEITAS

Supervisor:
Prof. Dr. Francis HEYLIGHEN

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in Interdisciplinary Studies

in the

ECCO – Center Leo Apostel
Doctoral School of Human Sciences

March 21, 2019

http://www.vub.ac.be/
http://vveitas.wordpress.com
http://pespmc1.vub.ac.be/HEYL.html
https://student.vub.be/en/phd/dsh##about-dsh
http://www.vub.ac.be/CLEA/

iii

Vrije Universiteit Brussel

Abstract

Faculty of Arts and Philosophy

Doctoral School of Human Sciences

Doctor of Philosophy in Interdisciplinary Studies

Synthetic Cognitive Development
of decentralized self-organizing systems

by Viktoras Kabir VEITAS

This thesis is an interdisciplinary design inquiry into the operation of intelligence. It
is aimed at conceiving a computational model of individuation of an open cognitive
system and builds upon the evolutionary systemic framework of open-ended intelli-
gence, which treats difference primal to identity, becoming primal to being, change
primal to stability and communication primal to object. First, we devise the princi-
ples of the open cognitive system from selected concepts, techniques and currents of
theoretical and pragmatic thinking in the domain of the evolution of mind, brain
and body. Then, using the metaphysical framework of open-ended intelligence,
these principles and requirements are integrated into a model of synthetic cognitive
development which rests on the mechanism of progressive determination of systemic
constraints in an evolutionary developmental way. Further, we formulate the com-
putational perspective of the stigmergic cooperation of a population of independent
and heterogeneous actors in terms of an open-ended decentralized computing model.
Finally, we specify the semantics of the computational model and software design
by integrating the actor model with graph computing and, through computational
simulation experiments, demonstrate the stigmergic computing in the domain of de-
centralized exchange. The open-ended decentralized computing model proposes a
path for conceiving, designing, simulating and engineering open systems by empha-
sizing the process of self-organization of an unconstrained space of possibilities. It
extends the paradigmatic shift of open-ended intelligence from identity to individ-
uation into the domain of engineering, particularly of artificial general intelligence
and the ambition to integrate advanced autonomous technologies into the fabric of
society.

Keywords: Evolution, cognitive system, open-ended intelligence, individuation, artifi-
cial general intelligence, stigmergy, self-organization, decentralization, actor, graph, compu-
tational model

http://www.vub.ac.be/
http://www.vub.ac.be/CLEA/

v

Acknowledgements

I thank my supervisor Professor Dr. Francis Heylighen for his decades long aca-
demic presence in complexity and interdisciplinary science domain, which drew me
to engage into this journey. I am deeply grateful for his encyclopaedic knowledge,
incredible openness for discussion, advice, encouragement and allowance for excep-
tional freedom of deep intellectual exploration.

I would like to extend special gratitude to Dr. David R. Weinbaum (Weaver),
member of my advisory and examining committees, for inviting me to the world of
living philosophy of individuation and becoming, which became the cornerstone,
guidance and research avenue for this work and beyond.

I express my sincere appreciation to the members of the examining committee
Professor Ann Nowé (VUB), Professor Pieter Ballon (VUB), Dr. Marta Lenartowicz
(VUB), Dr. Ben Goertzel (Xiamen University of Technology) and Dr. Harry Halpin
(Massachusetts Institute of Technology).

I am grateful to Yuri Milner Foundation and SingularityNET Foundation for the
funding and support. Many thanks to Ailsa Campbell for proofreading and gram-
mar advice; to all members of the Global Brain Institute for the intellectual environ-
ment and eyes-opening, mind-bending discussions; most importantly – to all my
friends for expressed or unspoken patience and love.

vii

Contents

Abstract iii

Acknowledgements v

1 Framing an interdisciplinary problematique 1

1.1 Methodological approach . 1

1.2 A dangerous method . 2

1.3 A precarious landscape of inquiry . 3

1.4 Structure of the thesis . 5

2 A quest to understand 7

2.1 AI research perspectives . 7

2.1.1 General artificial intelligence . 7

2.1.2 Narrow artificial intelligence . 8

2.1.3 Global brain . 8

2.1.4 Universal intelligence . 9

2.1.5 Freedom and constraint . 10

2.1.6 Open-ended intelligence . 11

2.2 Evolution of body, brain and mind . 12

2.2.1 Evolution beyond biology . 13

2.2.2 Units, levels of selection and interactions between them 14

2.2.3 Hierarchies are not enough . 23

2.2.4 Co-evolution of structure and function 31

2.2.5 Guided self-organization . 45

2.3 Insights from cognitive and neuro science 45

2.3.1 Spreading activation . 45

2.3.2 Ecological rationality . 46

viii

2.3.3 Rate distortion theory . 46

2.3.4 Coherence . 48

2.3.5 Integrated information . 49

2.3.6 Human cognitive development 49

2.3.7 Enaction . 50

2.3.8 Sense-making . 51

2.3.9 A worldview . 52

2.4 Summary of the chapter . 53

3 Open-ended intelligence 55

3.1 Introduction . 55

3.2 Theory of individuation . 59

3.2.1 Philosophy of information . 60

3.2.2 Assemblage theory . 61

3.2.3 Metastability . 66

3.2.4 Progressive determination . 70

3.3 Individuation of cognition . 71

3.3.1 Pre-, fluid and fully formed individuals 71

3.3.2 Scales of individuation . 73

3.3.3 Synthetic cognitive development 74

3.3.4 The scheme of cognitive development 80

3.4 Summary of the chapter . 81

4 Decentralized computing for synthetic cognitive development 83

4.1 The power of computational metaphor 83

4.2 Through the lens of computation . 84

4.2.1 Symbolic versus sub-symbolic 84

4.2.2 ’Selective’ and ’descriptive’ information 85

4.2.3 Deterministic versus non-deterministic computation 86

4.2.4 Closed computing . 89

4.2.5 Open computing . 90

4.3 Conundrum of decentralization . 94

4.4 Consensus and synchronization . 99

4.4.1 Open-ended decentralized computing 102

4.5 Stigmergic computing . 105

ix

4.5.1 Process . 107

4.5.2 Message passing for process interaction 107

4.5.3 Graph models for data structure 109

4.5.4 "Classical" example of stigmergy 112

4.6 Summary of the chapter . 113

5 Towards architecture for open-ended decentralized computing 117

5.1 Actor model and framework . 118

5.1.1 Description of the model . 118

5.1.2 The fundamental principle of (de)centralized computing 121

5.1.3 Extending the actor model with mobility and location 123

5.2 Graph computing . 126

5.2.1 Graph databases . 126

5.2.2 Graph traversals . 128

5.2.3 Vertex-centric spreading activation 130

5.2.4 Navigating infinite data structures 132

5.2.5 Interaction of subjective perspectives 133

5.2.6 Implicit auto-approximation . 134

5.2.7 Decentralized indexing . 135

5.3 Architecture for open-ended computing 138

5.3.1 Implementation guidelines . 142

5.4 Summary of the chapter . 143

6 Offer networks: a model of decentralized exchange 145

6.1 Economic context . 145

6.2 Software architecture . 147

6.2.1 Simulation engine . 148

6.2.2 Monitoring and analysis engine 149

6.2.3 Simulation modelling . 150

6.3 OfferNets: informal specification . 150

6.3.1 Data structure . 153

6.3.2 Processes . 156

6.3.3 Research questions . 162

6.4 Centralized versus decentralized processes of OfferNets 162

6.4.1 Setup . 163

x

6.4.2 Observed dynamics . 163

6.5 Summary and discussion . 167

7 Future avenues of application 171

7.1 Open machines . 171

7.2 Prospective domains of application . 173

7.2.1 Smart mobility and cooperative intelligent transportation sys-
tems . 173

7.2.2 Distributed trust, privacy and security 177

7.2.3 Internet of things and data economy 178

7.2.4 Energy markets . 180

7.2.5 Cloud, edge and fog computing 181

7.2.6 Decentralized applications and computing frameworks 183

7.3 Summary of the chapter . 184

8 Summary and conclusion 185

8.1 Summary . 185

8.2 Conclusion . 188

Bibliography 191

xi

List of Figures

2.1 Freedom and constraint . 10

2.2 Global dynamics in hierarchy . 15

2.3 Example of near decomposable system 18

2.4 Hierarchical structure of near-decomposable system 19

2.5 Test-operate-test-exit loop . 21

2.6 Metasystem transition . 22

2.7 Graph types . 39

2.8 Feedback control system . 40

2.9 A thermostat and a person . 41

2.10 Control system hierarchy . 42

2.11 Relations among orders . 43

2.12 Rate-distortion curve . 48

3.1 Preformationism, interactionism and constructivist interactionism. . . 57

3.2 The universe of possible minds . 58

3.3 Open-ended intelligence . 59

3.4 The process of "concretization". 60

3.5 Territorialization and deterritorialization 64

3.6 Internal and external relations . 66

3.7 Meta-stability and precariousness. 67

3.8 Panarchy. 69

3.9 Degrees of metastability. 69

3.10 Individuation of cognition . 72

3.11 Scales (stratas) of individuation . 74

3.12 Relations between scales . 75

3.13 Reciprocal selection . 78

xii

3.14 A scheme of synthetic cognitive development 81

4.1 Deterministic vs. non-deterministic . 87

4.2 Turing’s unorganized machine . 92

4.3 Determinism with relation to freedom and constraint 93

4.4 De-centralization as network structure 95

4.5 Representing Turing machines as graphs 98

4.6 Scalable assemblages of computation processes 100

4.7 Open-ended decentralized computing 103

4.8 Stigmergic computing . 106

4.9 Process turns inputs to outputs . 107

4.10 An agent "owns" a processes . 107

4.11 Message-passing channel . 110

4.12 Message-passing graph . 110

5.1 Actor model and system . 120

5.2 Participatory semantics . 121

5.3 Actor model resource model . 126

5.4 Graph traversal expression in Gremlin 130

5.5 Vertex-centric spreading activation graph 131

5.6 Folding a line into small-world . 131

5.7 The grammar-based random walker architecture. 133

5.8 A "join" of graph and traversal. 133

5.9 Centralized and (de)centralized indexing 136

5.10 Open-ended decentralized computing architecture 139

5.11 Decentralized graph traversal and structure 141

5.12 Simulation and analysis engines. 142

6.1 Simulation engine . 148

6.2 Monitoring and analysis engine . 150

6.3 Conceptual architecture of OfferNets. 151

6.4 Representation of preferences. 152

6.5 OfferNets graph structure. 154

6.6 OfferNets graph schema . 155

6.7 A chain and a cycle. 156

xiii

6.8 A workflow – data centric approach. 156

6.9 Graph mutation by adding typed links (small graph). 157

6.10 Graph mutation by adding typed links (large graph). 158

6.11 Cycle discovery in OfferNets. 160

6.12 Parameter distribution. 164

6.13 Sensitivity to depth of traversal. 165

6.14 Sensitivity to graph topology. 165

6.15 Decentralized search sensitivity to number of edges. 166

6.16 Time of search dependency on number of vertices 167

6.17 Modulating graph topology . 167

7.1 Connected car. 175

7.2 IoT device types and structure. 179

7.3 Centralized and decentralized power grid structures. 181

7.4 Cloud, edge and fog computing . 182

xv

List of Tables

2.1 The era of sensimotor intelligence . 50

4.1 Systemic perspectives by the level of (de)centralization 99

—————————————————————————————

xvii

to No-body

1

Chapter 1

Framing an interdisciplinary
problematique

I must create a system, or be enslaved by
another person’s. I will not reason and
compare: my business is to create.

William Blake, poet

Those who are skilled in producing
surprises will win.

Sun Tzu, military strategist

[..] focus at the intersection of theory and
practice. There is no progress without
friction.

Erik Meijer, computer scientist

1.1 Methodological approach

This work presents an interdisciplinary design inquiry into the operation of intelli-
gence. As interdisciplinary, it builds on knowledge from numerous domains of sci-
ence, including philosophy, artificial intelligence, computer, cognitive, and social
sciences, as well as practical know-how in fields such as information system man-
agement. As a design inquiry it aims at creating an intelligent system rather than
"just" formulating a theory with claims for generality or objectivity.

To my great surprise and wonder, the journey of the inquiry has led to immersion
in the most abstract philosophical frameworks that I could have imagined and has
contributed to the formulation of a conceptual approach to a synthetic and natural

2 Chapter 1. Framing an interdisciplinary problematique

intelligence in terms of open-ended intelligence and individuation of intelligence con-
cepts. This approach has guided the whole inquiry, which has also been continu-
ously shaped, reformulated and adjusted by the process.

Any interdisciplinary inquiry by definition dissolves one or more boundaries
among scientific disciplines, modes of thinking and approaches. Therefore, it natu-
rally calls for a certain amount of necessary conceptualisation for the internal logic
of investigation. The broader the inquiry, the more theoretic conceptualisation is
needed in order to keep its integrity. The conceptual framework of the present in-
quiry is ultimately broad, with its roots in the philosophy of becoming and individ-
uation and the theory of evolution. Yet as much as we are tempted to formulate the
“concept of intelligence” , it only makes sense in terms of concrete phenomena, to
which it is inseparably connected – intelligent beings embodied in concrete bodies
and embedded in a concrete environment.

Hence, the choice of a design-based research methodology for this work is mo-
tivated by my conviction that an investigation of intelligence must be approached
not only via an interdisciplinary assemblage of concepts, principles and tools drawn
from various disciplines, but, even more importantly, through interweaving them
into a single thread – connecting ultimately abstract and broad to the most specific
and vice versa. Needless to say this thread of thought should cut through numerous
intermediate levels of abstraction. As a cotton thread immersed into a jar of salty
water acts as an attractor for ions and their solidification into a column of crystals,
the ambition of synthetic intelligence design provides a basis for organizing a rich
solution of interdisciplinary knowledge about cognitive living systems.

A few important methodological considerations can be formulated with the help
of this metaphor. First, the crystallization is a process of growth. This process, rather
than exact configuration of the resulting crystal, is the locus of attention and interest.
Likewise, in a design inquiry, assembling the interdisciplinary knowledge into an
image of an intelligent system is an iterative process without a clear success criterion.
Second, the exact result of a design inquiry is never known in advance, just as the
precise macro structure of the crystal is not determined by putting a thread into
a solution. Third, such a process has no determined end state, as a crystal stops
growing only because the thread is pulled out of the solution by the hand of a player
(considering that the pool of interdisciplinary knowledge is inexhaustible, contrary
to the salt ions in a jar). The metaphor of crystallization goes deeper than illustrating
the research methodology of this thesis – it is a metaphor for a general process of
individuation and open-ended intelligence.

1.2 A dangerous method

As the metaphor of crystallization partially illustrates, a design-based interdisci-
plinary research is necessarily accompanied by a complex and therefore often incon-
venient context, which needs to be taken into account when engaging and proceed-
ing with the inquiry. Importantly, this context is also relevant to interdisciplinary
research in general.

If taken at face value and without much consideration of the context, the state-
ment “I will not reason and compare: my business is to create”, chosen for the epi-
graph of the current chapter, may sound unscientific or even utterly unreasonable –

1.3. A precarious landscape of inquiry 3

surely in science we have to reason and compare different approaches, possibilities,
solutions and models. Yet I chose this quote to illustrate the self-reinforcing nature
of evolutionary process that cognition is – emphasizing the serendipitous “consid-
erations” and “choices” that a process takes without supporting them with evidence
– simply because no evidence exists before a process of cognition starts (Weinbaum,
2018).

Interdisciplinary investigation presents the dilemma of the fine balance in choos-
ing between, on the one hand, broad coverage of many domains and ways of think-
ing, and, on the other, a deep investigation of each issue – neither of which is actually
possible due to constraints of time and space. None of these modes of thinking is in-
herently better or worse than another: it is easy to overlook important details when
taking a “generalist” view; but it is as easy to lose high-level understanding of an
issue due to digging too deep into details and specifics. We attempt to deal with
this dilemma by utilizing the principle which states that one should enter into the
details of each branch of investigation as deeply – but not more – as needed to justify
a chosen direction of further design inquiry from that point. Applying this principle
is a somewhat frustrating experience as it often involves a fair amount of uncer-
tainty over deciding to draw interim conclusions without investigating the issue "to
the end". This uncertainty is decreased by iteratively revisiting interim decisions
and considerations at every loop of the design inquiry, which brings about another,
rather technical, inconvenience – no stage of the design process (i.e. chapter of the
thesis in this case) can be considered finished unless the whole process is "finished".

The work persistently negates the primacy of top-down and bottom-up approaches
over one another and holds that both modes of thinking need to be used simulta-
neously, or, at worst, iteratively. Design and management practitioners and scien-
tists as well as software and hardware engineers face the issue of combining the
top-down and bottom-up thinking every day. They have developed a plethora of
methods and tools for dealing with it – under the labels of action research, iterative
design, test-operate-test-exit loop, orient-observe-decide-act loop, fast prototyping,
agile methodology and many more. All these methods build upon the same idea
of establishing a "top-bottom-top-bottom-top" design loop and iterating it as fast as
possible – in this way trying to capture both perspectives at the same time.

An important technique helps in navigating this fundamentally open-ended pro-
cess of the design inquiry in this work. The technique is the very action of emphasiz-
ing the "mechanistic" aspect of the process of cognition and intelligence – i.e. looking
at the living and intelligent complex system as a type of machine, which, being much
less deterministic than we usually attribute to the word, can still be simulated using
mathematical and computational methods. By this, we link philosophical concepts
of open-ended intelligence and individuation of intelligence to its concrete and pos-
sible manifestations.

1.3 A precarious landscape of inquiry

With a certain irony, we can see how the mechanistic aspect actually links images of
"human – biological – natural" to those of "synthetic – artificial – constructed" intelli-
gence, instead of, as so often perceived, differentiating between them. The irony lies
in the observation that, while many schools of thought implicitly or explicitly posit
irreducibility of the phenomenon of cognition to a physical process (using images of,

4 Chapter 1. Framing an interdisciplinary problematique

e.g., soul or else), at the same time cultures based on these schools of thought rou-
tinely treat humans as machines. The property of being human is often measured
by the performance of individuals according to their social role as citizens, soldiers,
good husbands or wives, dedicated employees and the like. It seems to me that this
is precisely why the idea that "AI will take over the world and exterminate humans"1

resonates so well in some (mostly "western") – societies. Partially it is because the
concept of intelligence is continuously being reduced to the efficient optimization
function of a behaviour in a particular environment (Bostrom, 2012), which AI is
poised to perform better. I believe that intelligence is much more than optimization
– it is an open-ended creative exploration for opportunities and growth via constant
re-definition of itself. The artificial intelligence programme – the quest to create a
synthetic mind – is a fertile context of exploring the open-endedness of intelligence
in the broadest possible sense.

I believe that there are many reasons why the collective psyche has developed
such inconsistent patterns of making sense of "human nature" and intelligence at
large. One of the reasons which I find fundamental and particularly interesting in
terms of this work has to do with the emphasis and desire for predictability of the
world. It is natural for brains and minds to search for repeating patterns in envi-
ronmental stimuli and infer causal relationships between them. This process lies at
the core of making sense of the world, everything around and ourselves – hence in-
telligence. Almost always we interpret sense-making as a some sort of asymptotic
optimization process aimed at acquiring the “true” or “best” picture of the world,
“correct” thinking and “useful” behavioural patterns. This is a presumption that has
proved to be of immense value for the development of the human mind, culture and
science, yet is precisely the one that I would like to challenge – not because it is not
“true”, but because I believe it to be a special case of a broader process of individ-
uation of intelligence, which is divergent rather than convergent. In this thesis the
divergent aspect of the process of intelligence is investigated as manifested in de-
centralized computing and the reflexive nature of distributed intelligence and social
systems.

Usually, making sense of anything is related to finding some order within dis-
order – so constructing a model of reality and exposing it to rigorous checking and
testing against that reality. This is the so-called hypothetico-deductive method of
science. A deep underlying assumption behind the method is that there is an order
that can be found. So thinking in this case starts from assuming the order, devising
a model of it and then augmenting and changing it, if it does not stand up to what-
ever tests the world presents. Another way of thinking, which we are embracing
and advocating here – without denying the hypothetico-deductive one – is starting
from the assumption of disorder and bringing order to it by devising models and
explanations. It may sound like a subtle nuance, yet conceptually it makes all the
difference in the world – as it introduces the need to "to put into the driver’s seat" a
subjective perspective of an entity that makes sense of the world. The central ques-
tion becomes not “what is order or what is disorder” but how order comes about
from disorder. In other words – how the process of self-organization happens – first
and foremost in the perceiver’s mind. For the purposes of this research it means
that we are mostly attending to the question of how models and images of the world
are devised that make sense in that world for a particular subject rather than what
the true or correct models are. If we translate this principle to the quest for artificial

1https://en.wikipedia.org/wiki/AI_takeover

https://en.wikipedia.org/wiki/AI_takeover

1.4. Structure of the thesis 5

general intelligence, the resulting architecture should encompass a mechanism for
creating images of the world by making sense of the unknown and unknowable –
via embodying open-ended intelligence principles.

The prevailing emphasis on asymptotic processes has peculiar spillover effects
upon other concepts. In particular, the concepts of “computing” and “computa-
tion” are often by default considered predictable and deterministic processes. Of
course, the focus on deterministic computation (clearly related to the desire for pre-
dictability of the world) is well understandable since why would anyone want to
start a computational process which was not known to lead to "useful" results when
criteria for "usefulness" could be defined before starting a process? Even so, it is
first of all consequential to note that deterministic computation is a special case of
non-deterministic computation2, and therefore the concept of computation covers
both. Second, there is at least one large family of systems (complex adaptive systems –
which cannot be understood by breaking them into parts) and related processes (self-
organization of structure and patterns without external control) that are inherently
non-deterministic. An important corollary of this thesis is that the essentials of com-
plex adaptive systems and self-organization are more important for operation and
development of society, intelligence, cognition, living systems and evolution at large
than any deterministic (or even probabilistic) processes observable with respect to
them. I hope at least to show that it is a valid perspective to consider – but of course
aim at convincing the reader that it is a much richer perspective, having practical
importance when designing and operating artificial systems exhibiting increasing
levels of autonomy and intelligence. This does not deny the value of understanding
and designing predictable and deterministic processes – once again considering that
they are special cases of non-determinism. The questions of interest are then: how
does an inherently non-deterministic process start to behave predictably, or how can
it be modelled as such? How do the constraints of such process come to be from
nothing and how can we formulate all this in computational terms?

With respect to the domain of social science, I am of the opinion that a shift in
the perspective towards considering a divergent nature of intelligence, cognition,
social development and evolution at large is of more relevance than ever when the
exponential growth of technology and human population has accumulated a mo-
mentum powerful enough to pivot dynamics of the whole system. This relevance
is clearly apparent in the climate change issue: it is clear that humanity is no longer
able conveniently to assume that it is not responsible for the reality (environmental
and otherwise) it lives in. My interest with respect to this example is to show how
the prevalent modes of thinking guide and largely constrain the space of future pos-
sibilities that we see, reflect upon and actuate – reflexively shaping the reality in a
way comparable to how self-fulfilling prophecies come “true”.

1.4 Structure of the thesis

The thesis is loosely structured into three interrelated parts – dealing with the con-
ceptual aspect (Chapters 2 and 3), computational aspect (Chapters 4 and 5) and
domains of application (Chapters 6 and 7). Chapter 2 discusses relevant existing
and historical perspectives to AI research, evolution of brain, body and mind with

2See debate about deterministic vs. non-deterministic Turing machines in Section 4.2.3 Determinis-
tic versus non-deterministic computation on page 86.

6 Chapter 1. Framing an interdisciplinary problematique

insights from cognitive and neuro-science. Chapter 3 presents the open-ended in-
telligence philosophy and its roots in the philosophy of individuation, and posi-
tions both historical perspectives and interdisciplinary approaches towards evolu-
tion of life and mind within it. In Chapter 4 we investigate the computational as-
pects of open-ended intelligence and develop a model of open-ended decentralized
computing. Chapter 5 proposes and discusses concrete models for implementing
open-ended decentralized computing and proposes the architecture that integrates
two paradigms – the actor model of computation and graph computing. Chapter 6
presents an example of preliminary implementation of the software architecture of
open-ended computing, utilizing the concept of decentralized exchange. Chapter 7
discusses broad domains of applicability of the open-ended decentralized comput-
ing model and other prospective avenues of its implementation. Finally, in Chapter
8 we look at what came out from "keeping a thread in a jar of salty water" in terms of
integration of conceptual, computational and software development perspectives.
Further, in terms of future research, the relevance of the open-ended decentralized
computing model for dealing with socio-technological challenges and fostering ad-
vances of the human society are discussed. With this structure we attempt to ex-
pound the highly interrelated material in a linear manner. This is possible only par-
tially, since the value of interdisciplinary research comes first and foremost from
interconnectedness of knowledge from different disciplines, whereas these connec-
tions are largely cyclical. I have made my best efforts to introduce earlier concepts
that are used later. Still, since the relations between these concepts are in large part
the content of this work, the text includes many internal backward and forward
references. To best fully appreciate these relations it is advisable to read at least
Chapters 2, 3 and 4 straight through and only then follow the internal references.

A few more technical issues before we proceed. First, I purposefully use first
person pronoun "I" and third person pronoun "we" interchangeably throughout the
text. The default pronoun is "we", which reflects the approach that ideas do not
have a single source and emphasizes the "decentralization" of the thinking process
as well as inviting the reader to participate in it. The pronoun "I" is used for denoting
my more subjective intuitions, perspectives and images. Second, double quotation
marks are used both for denoting quotes of other people and a figurative speech.
Third, both italic and bold text is used for denoting definitions, to draw attention or
simply accentuate words and sentences without following any more strict rules of
using them.

7

Chapter 2

A quest to understand

2.1 AI research perspectives

The modern quest for creating machines capable of thinking like humans began
around the middle of the twentieth century, undoubtedly triggered by the advent
of digital computers. Two major events are usually mentioned as indicating the be-
ginning of the artificial intelligence (AI) research programme: Alan Turing’s article
“Computing Machinery and Intelligence” (Turing, 1950) and the Dartmouth Sum-
mer Research Project on Artificial Intelligence of 1956.

In the course of six decades of research and scientific and popular discourse
around AI, a number of informal and formal descriptive terms have emerged, aimed
at indicating different aspects or types of intelligence, as well as research perspec-
tives. We review the major concepts and the contexts in which they are used in
order to pave the way for further discussion and illustrate the precariousness and
controversy around the concept of intelligence at large.

2.1.1 General artificial intelligence

General artificial intelligence (AGI) is considered by its proponents a return to the
roots (Goertzel, Pennachin, and Geisweiller, 2014) of the original AI research pro-
gramme formulated by the organizers of the Dartmouth Workshop in 1956 as “an
attempt [...] to find how to make machines use language, form abstractions and con-
cepts, solve kinds of problems now reserved for humans, and improve themselves”
(McCarthy et al., 2006).

With the aim of coming up with a standard definition of universal intelligence,
Legg and Hutter (2007) collected over 70 definitions of intelligence and differenti-
ated them into three broad categories: (1) collective (found in encyclopaedias and
dictionaries), (2) psychologist and (3) AI researcher definitions. They then distilled
their own account – intelligence measures an agent’s ability to achieve goals in a
wide range of environments – by observing the most common features used for de-
scribing intelligence:

8 Chapter 2. A quest to understand

• embodiment: a property that an individual agent has as it interacts with its en-
vironment or environments;

• goal directness: related to the agent’s ability to succeed or profit with respect to
some goal or objective;

• efficiency: dependence on how able the agent is to adapt to different objectives
and environments.

Likewise, Goertzel (2009) proposes a notion of efficient pragmatic general intelli-
gence and defines it as the capability of a system to choose actions maximizing its
goal-achievement, based on its perceptions and memories, and making reasonably
efficient use of its computational resources.

A somewhat less pragmatic, but still computationally expressible definition is it-
erated by Battaglia et al. (2018) with relation to linguistic theory, referencing Chom-
sky (1969) and Humboldt (1988), that intelligence is the infinite use of finite means
in which a small set of elements can be productively combined in limitless ways.

2.1.2 Narrow artificial intelligence

As defined by Kurzweil (2005), narrow AI refers to machines and algorithms which
perform a specific function that once required human intelligence to perform, and
does it at human levels or better. The difference between the concepts of "general"
and "narrow" AI seems to be "only" that the latter emphasizes different functions
considered intelligent, while the former emphasizes the integration of these func-
tions into a single system capable of more than the sum of its parts. Interestingly,
the definition of "narrow" AI is mostly used by AGI researchers to distinguish their
research programme from the multitude of research areas in machine perception,
natural language processing, machine learning, sensor fusion, neural networks, and
many others, which, for arguably historical reasons, have been placed under the
umbrella of AI research (Goertzel, Pennachin, and Geisweiller, 2014).

Yet, while the historical separation is obvious, the conceptual borderline is not
that straightforward, especially considering the latest achievements of the "narrow"
AI1. As a research field, "narrow" AI holds the potential and ambition to reach the
original AI agenda, albeit this has started to be vocalized only lately. For example,
Jürgen Schmidhuber, one of the pioneers of "deep learning" techniques, powering
much of the current success of "narrow" AI, envisions how artificial general intelli-
gence could grow out of current specialized pattern recognition networks using the
principles of reinforcement learning (Kahrs, 2017).

2.1.3 Global brain

The global brain is a metaphor for an emerging intelligent network that is formed by
all people with computers, knowledge bases and communication links that connect
them together (Heylighen, 2002b). Following the metaphor, the global brain is the
nervous system of the organism of human society. The origin of the concept can be
tracked at least to the middle of the twentieth century, yet gained a scientific and

1AlphaGo – an AI Go player; Libratus – an AI Poker player

https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Libratus

2.1. AI research perspectives 9

technical perspective with the rise of computer networks, the internet and social
networks.

Apart from social, organismic, philosophical, utopian, technical, cybernetic and
many other perspectives, the global brain metaphor first of all emphasizes the con-
cept of distributed intelligence, which emerges from a network of interacting heteroge-
neous agents of lower capabilities. The relation of intelligence and network structure
is strongly grounded in neurophysiology and is very well reflected in AI research
and practical applications. A network of interconnected and interacting processes is
largely regarded as a correct image of an intelligence machinery by pioneer as well
as contemporary AI researchers (Goertzel, 2002; Minsky, 1988) and forms the basis
of the connectionist approach.

Relations in a network naturally represent interactions and interrelations among
many heterogeneous agents that are dynamic, seemingly chaotic, evolving, and do
not fit into clear logical and semantic structures. Yet the main message of the global
brain metaphor lies in its emphasis on the importance of self-organized coordination
of decentralized processes. Actually, all intelligence is essentially decentralized and
distributed, albeit to a different degree: brains and minds are products of interac-
tions of neurons and coordination of neural activity in brain areas; collective intelli-
gence of eusocial insects originates from their interaction via pheromone trails; the
intelligence of civilizations and societies as well as of companies and organizations
emerges from coordination among individual humans. In terms of the conceptual
perspective that we embrace in this work, the fundamental mechanisms of intelli-
gence transcend boundaries of these concrete embodiments and forms. We there-
fore consider artificial general intelligence, global brain research and distributed in-
telligence all as aspects of the same quest for understanding intelligence at large –
mutually informing and enforcing rather than contradicting each other.

2.1.4 Universal intelligence

The theory of universal intelligence provides a formal definition of a universally
intelligent agent (AIXI), able “to achieve goals in a wide range of environments”,
which conforms to the definition of artificial general intelligence given above. Direct
practical application of this theoretical and mathematical abstraction of an intelligent
agent requires specific optimization mechanisms and algorithms for achieving use-
ful down-scaling of an otherwise incomputable model (Legg, 2008). A “practically
universal intelligent agent” optimizes its behaviour with respect to a given environ-
ment (or set of environments) by running iterative cycles of observation, learning,
prediction, decision, action and reward (Hutter, 2012, 2013). Agent-environment
interactions are modelled by formalizing both agent and environment as probabilis-
tic functions each feeding its output to the other’s input (Legg, 2008). Remarkably,
general agents, built using this formalism and these techniques, are able to learn
different (albeit rather simple as of now) environments without any context-related
adjustments.

10 Chapter 2. A quest to understand

2.1.5 Freedom and constraint

In the context of the quest for creating synthetic intelligence, concepts of general
artificial intelligence, narrow artificial intelligence, global brain and universal intel-
ligence represent complementary research perspectives rather than competing the-
ories. These perspectives more often interact by enriching rather than denying each
other’s results or theoretical approaches. Even if one of them (and "narrow" AI cur-
rently seems to be in the lead) provides an essential breakthrough for the AI research
programme, it is never isolated from important influences from and repercussions
to other perspectives.

One of the ways to see how the AI research perspectives interact is to identify
conceptual axes along which they take distinct approaches. The following axes ex-
plain well differences and similarities:

• Environmental interaction: how much the behaviour of a theoretical AI agent
and its implementation allows for a change, depending on the influence of an
environment; a usually overlooked aspect of this axis is the degree of agent’s
influence upon environment.

• Goal directedness: how much the agent’s behaviour is guided or can be ex-
plained by a-priori defined goals and values and how much these goals can
change or adjust to circumstances.

• Efficiency: how important efficiency and optimal behaviour considerations are
for a given perspective.

Obviously, these axes are not orthogonal – efficiency can be considered only with
respect to a goal of behaviour, while development of goals and values is often related
to the degree of environmental interaction. Furthermore, they are not exhaustive –
i.e. there are and always will be many more axes according to which intelligent be-
haviour can be discriminated and analysed. Yet we can distinguish one overarching
principle which grasps well the positioning of any perspective on any conceptual
axis depending on how much constraint is imposed upon an agent. The principle is
built upon the observation that each axis is as useful as the degree to which it enables
us to grasp how much AI architecture allows for its own development in terms of
interactions with environment, goal directness, efficiency and resource utilization.
This principle is henceforth called freedom and constraint.

We can informally map all AI research perspectives in the continuum between
complete freedom and ultimate constraint. The quest for synthetic intelligence can
then be understood as a search for a balance between freedom and constraint in
terms of specific manifestations of intelligent behaviour (agents, organisms, AI ar-
chitectures, etc.) with respect to specific contexts (goals, environments, etc.). Like-
wise, natural evolution "searches" for the same balance in each and every species
and organism.

FIGURE 2.1: Research perspectives as approximately positioned on
the freedom and constraint axis.

2.1. AI research perspectives 11

2.1.6 Open-ended intelligence

Open-ended intelligence is a novel theoretical approach to general intelligence pro-
posed by Weinbaum and Veitas (2017b) and is:

a process where a distributed population of interacting heterogeneous agents achieves
progressively higher levels of coordination. In coordination, here we mean the lo-
cal resolution of disparities by means of reciprocal determination that brings forth
new individuals in the form of integrated groups of agents (assemblages) that ex-
change meaningful information and spontaneously differentiate (dynamically and
structurally) from their surrounding milieu (ibid., p. 14).

Open-ended intelligence is a philosophical concept which first, allows for the max-
imum freedom (see Figure 2.1) and second, defines intelligence not in terms of its
specific manifestations or features, but in terms of a non-linear process of bringing
about precarious balances between the freedom and constraint invited and supported by
specific contexts.

In contrast to open-ended intelligence, all of the aforementioned types of intelli-
gence are examples of goal-oriented intelligence, which is characterized by (1) a more
or less sharp agent-environment distinction where environment is independent of
the agent’s behaviour and is objectively knowable; (2) agents having a priori given
goals while interacting in a knowable environment and (3) reward-driven behaviour
with respect to goals.

The approach to intelligence as a goal-directed behaviour is well established and
a prevalent mode of thinking – not surprisingly so, given its practical value in many
domains, including psychology, robotics and AI research. James (1890), in his semi-
nal study of the human mind, already chose to follow the principle that “[t]he pur-
suance of future ends and the choice of means for their attainment are the mark and
criterion of the presence of mentality in a phenomenon” (ibid., p. 8).

While goal-oriented intelligence is the measure of an agent’s competence to match
actions to observations such that it will achieve optimal results in a variety of envi-
ronments, open-ended intelligence is the process of emergence of intelligence itself, in-
cluding goal-directed intelligence and its manifestations. Open-ended intelligence
therefore considers maximally fluid environmental interaction by encompassing pro-
cesses of agent-environment differentiation and formation of the agent’s identity in
the first place. Moreover, open-ended intelligence includes the processes of goal and
value formation as well as determination of problematic situations which lead to
goal formation. Finally, agents do not have a priori goals or values and interact with
other similar agents in the environment shaped by the interaction itself.

The goal of this chapter is to introduce and briefly describe philosophical and
theoretical concepts which are essential for conceiving actual mechanisms of the
process of becoming intelligent. Conceiving, engineering, designing and building of
intelligent machines based on the concept of open-ended intelligence is the direction
of this work. The metaphysical framework of open-ended intelligence is developed
in depth and breadth by Weinbaum (2018). If we ask ourselves, which domain of
science and philosophy, which process observable in nature and theory most closely
embraces the notion of maximum freedom, the answer is quite obvious: evolution. It
is the best known exemplar of the open-ended intelligence process. Other domains
closely related to the concept are complex adaptive systems, complexity science and
network science. Therefore, we next attend to these and related domains from the

12 Chapter 2. A quest to understand

perspective of open-ended intelligence.

2.2 Evolution of body, brain and mind

Biological intelligence is a property of living organisms and has evolved with them
through the evolutionary process of phylogenetic development. Importantly, living
organisms are those which extend the phylogenetic development of species into the
onto-genetic and cognitive development of an individual. For example, humans are
considered intelligent as a species, which is the result of phylogenetic development,
yet with respect to a concrete individual – an embryo or a new born baby – it is
only a potentiality which has to be realized via long dependency on caretakers and
interaction with the environment. Brain imaging studies have demonstrated not
only that the human brain undergoes significant neurophysiological development
during the first years of life, but also that it continues well beyond infancy and up to
25 years of age (Lebel et al., 2008, p. 9-10).

The perceived borderline between phylogenetic and onto-genetic is manifested
by the notorious “nurture versus nature” debate of whether genes or environment
cause variation in human traits. From the perspective of freedom and constraint
(Section 2.1.5) phylogenetic, onto-genetic and subsequently cognitive development
are phases of the same process of progressive determination of constraints within
the initially unbounded “space of possibilities”. Progressive determination is the
very central concept for this thesis which will be explained in detail later in Section
3.2.4 and referenced many times throughout the work. In a nutshell, it is a mecha-
nism explaining how constraints that guide development of a system progressively
emerge within the very same process of development – creating the "space of pos-
sibilities" of further development2. It is somewhat tempting to position phyloge-
netic development of species, onto-genetic development of an individual brain and
body, and cognitive development of mind and its intellectual faculties into sequen-
tial stages. While such categorization makes sense for descriptive purposes, our aim
here is the formulation of a conceptual framework of progressive determination –
not for the purposes of description of how the known forms of intelligence have
evolved (e.g. humans), but rather for envisioning its open-ended possibilities for
evolving unknown forms of intelligence (e.g. artificial general intelligence).

Progressive determination devises a mechanism of formation of individuals which
is, first and foremost, an evolutionary process. In the popular discourse, evolution-
ary theory is most often associated with the somewhat simplified representation of
Darwin’s original work in terms of variation, selection and propagation of organ-
isms. Yet evolution and its theory is so fascinatingly rich, multifaceted and growing
from myriad internal discussions and theoretical perspectives, all having their share
of empirical examples in the pot of life, that phrasing something as an evolutionary
process merely means that "gods were not involved". Eldredge (2016) formulated

2The often used image of possibility or solution "space" is a powerful metaphor for describing the
processes about which we are talking. At the same time it is somewhat misleading – a possibility
space is often defined as an already existing structure which has to be searched or traversed by agent(s).
Importantly however, from the perspective of open-ended intelligence, the space is not defined a priori
- it is created by the agent(s) in the very process of traversing it. From a philosophical point, this is a deep
distinction, worth mentioning and keeping in mind while conceiving open-ended intelligence process.

2.2. Evolution of body, brain and mind 13

well how evolutionary theory is “[t]he elaboration of causal mechanisms underly-
ing a process of ancestry and descent that interlinks all organisms from the incep-
tion of life to the present”. While fitting into evolutionary framework, the concept
of progressive determination is of course influenced by, builds on and extends se-
lected aspects of its body. We will therefore discuss here these aspects which help to
consolidate and understand the concept of progressive determination.

2.2.1 Evolution beyond biology

A rather old idea that evolution can explain the increase of complexity in domains
other than biology was revived by Campbell (1997), who formulated the universal
selection theory and applied it to explain the evolution of knowledge. The universal
selection theory is in the spirit of Darwin’s framework and states that for any fit be-
tween system and environment, three processes should take place (Heyes and Hull,
2001): (1) blind variation3 (2) selective retention of variation and (3) preservation or
propagation of variations.

Evolutionary epistemology is the term introduced by Campbell (1974) and in simple
terms signifies an approach that considers knowledge creation as an evolutionary
process (Gontier, 2006). The key concept in the evolutionary epistemology research
programme is the one of vicarious selectors. It is based on the idea that nervous and
cognitive systems of organisms internalize complex patterns of environment in a
form of knowledge and memory. This knowledge is used for anticipating or "imag-
ining" environmental responses and selecting those which have a higher probability
of success if actually acted out – hence "vicarious". Arguably then, nervous systems
have evolved precisely in order to hold the vicarious selectors in memory and map
and recognize progressively more complex patterns of the organism’s interaction
with the physical world – which pretty much fits the definition of knowledge. Most
importantly, the concept of vicarious selectors implies that variation and selection
happen at more than one level – most probably in the cascade of levels where vari-
ation at each level is selected by the more or less "vicarious" selectors on the upper
level. Such cascades of levels of variation and selection have acquired the name of
nested hierarchies of vicarious selectors (Heylighen, 1995).

Evolutionary epistemology allows us to consider cognitive, cultural and social
aspects of life as results of the same process that powers biological evolution and
the overall increase in complexity. Remarkably, it implies that all that evolution does
is create knowledge, albeit in different forms. Conceptually, biological organisms –
bodies of plants, animals or any imaginable creatures of the world – are a form of
memory, of how to live, grow, interact, procreate and die within the given environ-
ment and with other fellow organisms. The fact that part of this knowledge creation
process gets extended from physical and biological into neural and cognitive, al-
lows the application of the same principles for understanding them, with, of course,
proper appreciation of the multifaceted nature of the evolutionary process itself. A
particularly illustrative example of the generality of these principles is their applica-
tion in computer science, AI and robotics for developing systems which create local
knowledge about certain physical properties of their environment (see Box 2.1).

3Note, that "blind" does not mean "random" – the variation can very well be biased by, for example,
developmental constraints. Yet it is always blind with respect to the selective pressures in a sense
that there is always considerable uncertainty on the level of variation about which variations will be
selected.

14 Chapter 2. A quest to understand

Box 2.1: Evolutionary computing and particle filters

The principle of blind-variation-and-selective-retention has been success-
fully reflected and utilized in the field of computer science and AI in the form
of evolutionary computation. It is a family of algorithms based on generating
large sets of candidate solutions which are then selected according to a prede-
fined fitness criterion or function. Complete algorithms often involve many
iterations where subsequent generations of candidate solutions are generated
by mutating the most successful solutions in a previous generation – resulting
in the evolution of the overall solution towards a target. Many variants of evo-
lutionary computation exist, tailored for different applications and contexts.
These algorithms have proved to be very successful in application domains
related to high degrees of uncertainty – namely, robotics and AI, which deal
with the messy physical and social world.

Particle filter is an illustrative example of how simple principles of univer-
sal selection theory are used in practice for solving contemporary robot local-
ization problems (Thrun, Fox, and Burgard, 2005). Considering that a robot
has a certain number of sensors capable of sensing its environment (cameras,
radars, ultrasonic sensors, etc.) and a reference map (e.g. the plan of a build-
ing), the particle filter method works in steps resembling those of variation,
selection and propagation:

i. A large number of hypotheses about robot location is generated ran-
domly (variation step);

ii. Each hypothesis is compared to the actual readings from robot sensors
and the probability of correctness (fitness) is calculated (selection step);

iii. The new set of hypotheses is generated by probabilistically choosing the
ones from the old set depending on their fitness criteria – the successful
hypotheses have more chance of being selected (propagation step).

iv. Steps 2 and 3 are iterated until the acceptable confidence levels for robot
location are achieved.

Note, that localization is a hard problem and sometimes considered the most
fundamental problem in providing autonomous capabilities for robots (Fox
et al., 2001) and, hence, their intelligence. Particle filters appeared to be an
extremely successful, efficient, fast and simple method to deal with uncer-
tainties related to errors in sensor readings, ambiguous maps, movement and
other real world problems. Conceptually, a robot with a particle filter can be
seen as roughly implementing the mechanism of a "nested hierarchy of vicari-
ous selectors" (see Section 2.2.1) which draws a clear parallel between creation
of knowledge in natural and artificial worlds.

2.2.2 Units, levels of selection and interactions between them

In evolutionary theory, a biological entity which is the subject of natural selection is
called a unit or level of selection. A heated debate persists among evolutionary scien-
tists about what the “true” unit of selection is (Lloyd, 2012) – arguments and exam-
ples exist for treating gene, cell, individual organism, behavioural pattern, group,

2.2. Evolution of body, brain and mind 15

species or even higher levels as such units. My position follows that of Lewontin
(1970) in that “[t]he generality of the principles of natural selection means that any
entities in nature that have variation, reproduction, and heritability may evolve. [. . .
These] principles can be applied equally to genes, organisms, populations, species,
and at opposite ends of the scale, prebiotic molecules and ecosystems”. This does
not mean that units and levels of selection are not important – rather that evolution
operates on different units and levels simultaneously, albeit arguably with different
levels of impact on the overall dynamics. Furthermore, the question and mechanism
of interaction among different levels is of major significance.

There are a number of scientific perspectives which try to develop concepts in
order to understand relations and interactions among different observed levels of
organization in complex systems. Tëmkin and Eldredge (2015) explore the role of
networks and hierarchies in biological evolution. Applying the principles of com-
plex systems and the role of nested hierarchies in understanding their underlying
dynamics, they endorse the hierarchical perspective to evolutionary theory. The ar-
gument is that much of the complexity of biological evolutionary phenomena stems
from the synergetic effect of idiosyncratic processes at different organization levels
and dynamics of inter-level interactions (Figure 2.2). Stable patterns observable in
living systems are due to the “nested hierarchical architecture of the nature’s econ-
omy” – as nested networks are very robust to external perturbations.

FIGURE 2.2: A diagram of global dynamics in a hierarchy, adapted
from Tëmkin and Eldredge (2015). Intra-level direct interactions are
shown as solid links connecting individual entities (circles) within
networks at all the levels; inter-level indirect interactions represent-
ing upward and downward causation are shown as up and down

arrows, respectively.

The central to complex systems science concept of emergence – a phenomenon
of appearance of larger entities with new qualities from the interaction of smaller
entities – cannot even start to be formulated without postulating distinct and hierar-
chically ordered levels of organization. Therefore, the model of hierarchical evolu-
tion can be, and has been, usefully applied for understanding the broad domain of

16 Chapter 2. A quest to understand

complex adaptive systems, including knowledge systems and scientific evolutions,
social systems and cultural development, brain, mind and cognitive development.

In general, systems are described by combining two perspectives: structural,
i.e. how a system “looks” in terms of wholes and parts; and functional, i.e. how a
system “works”. Not surprisingly, the hierarchical model can be applied to both
perspectives in terms of structural hierarchies and functional hierarchies. Structural
hierarchy is a set of hierarchical relations which describes how parts relate to the
whole. Functional (or organizational) hierarchy describes a situation when one part
or level of a system controls and directs the behaviour of another part or level. While
both structural and functional hierarchies are observed in most complex systems,
structural hierarchies are more typical for describing the nested structures of the
physical world (nucleus, atom, molecule, crystal, rock, planet, solar system, galaxy
and super-galaxy). Functional hierarchies, on the other hand, characterize better the
world of life, mind, culture and animal or human society (Heylighen, 1995).

Structural hierarchies

The seminal article of Simon (1962) laid the ground for looking at complex systems
via the perspective of structural hierarchies. Complex systems in the most general
sense are understood as those which are made up of a large number of parts that
interact in a non-simple way. In such systems, the “whole is more than the sum of
the parts, not in an ultimate, metaphysical sense, but in the important pragmatic
sense that, given the properties of the parts and the laws of their interaction, it is
not a trivial matter to infer the properties of the whole” (ibid., p. 2). The analytic
and descriptive power of this perspective is based on the observation that complex
systems are more stable and, actually, have a higher probability of evolving their
complexity when they exhibit some form of hierarchical modularity. That is, the
time required for the evolution of complex forms depends on numbers, distribution
and interaction of potential intermediate stable forms. Arguably, structural hierar-
chies themselves have evolved as an effective method for developing complex forms
and, therefore, are a basic architecture of complexity. The argument for a hierarchical
architecture of complexity is supported by probabilistic considerations and empiri-
cal observations.

Probabilistic considerations: evolution of complex systems.

Simon (ibid.) provides a simple example and simple calculations to show that a com-
plex system has a higher probability of evolving if and when it is “organized” hier-
archically from stable modules. Suppose there are two watchmakers who both are
in the business of producing the same type of watch consisting of 1000 interacting
elementary parts. The first watchmaker, named Tempus, has organized the process
so that all 1000 parts have to be assembled at once. If the process gets interrupted
by a phone call, visitor, or a small inaccuracy of assembling, an already assembled
part disintegrates. The second watchmaker, named Hora, has designed a process
in such a way that she can assemble 10 elementary parts into sub-assemblies, then
assemble those into larger sub-assemblies of 100 elementary parts, and finally as-
semble the whole watch of 1000 parts. The sub-assemblies at all intermediate levels
are stable in the sense that they can be securely stored. Therefore Tempus has to
start the whole assemblage process from the start each time it has been interrupted,

2.2. Evolution of body, brain and mind 17

while Hora can use previously completed sub-assemblies and repeat only the rel-
atively small portion of work of interrupted sub-assembly. It turns out, that given
these circumstances, Hora can expect to spend on average three orders of magnitude
less time for constructing one watch as compared to Tempus; actually Tempus has
an exceedingly small possibility of ever completing even one watch.

The mathematical formula for calculating the expected time for completing a task
subdivided into subtasks is given by (Growney, 1982):

T =
s

p
× [

1

(1− p)U
− 1] (2.1)

Where T is the expected time for completing an assemblage of a system; s – a num-
ber of sub-assembly steps, U – a number of elementary units in a sub-assembly; and
p – the probability that the process will be interrupted during adding an elementary
unit to a system. Intuitively, the formula says that the efficiency of a hierarchical as-
sembly is a trade-off of probability of errors, cost of errors, the hierarchical structure
of the system (in this case the number of assembly steps) and the cost of a single
assembly step:

• The larger the probability and cost of an error, the more modules are needed
for the same level of efficiency;

• Yet the higher the cost of an assembly step, the greater the increase in the num-
ber of modules and hierarchical levels reduces efficiency.

Even if watches were to be assembled by randomly fitting pieces together, sys-
tems having hierarchical subsystems are more stable and have more chance of oc-
curring; therefore many natural and living systems are hierarchical. However, the
metaphor assumes an a priori goal of the assemblage process. Yet unlike the watch-
makers, evolution does not have any plan, except endless experimentation with
functions and structures – as if watchmakers were allowed to come up with any way
or mechanism that can measure time. Even then, the necessity of measuring time
has to emerge from other structures and functions (e.g. agricultural, industrial soci-
ety, etc.) through their evolution. We therefore can ask ourselves: what additional
options and complexity is implied by the perspective to evolution as an open-ended
process without goals?

Empirical observations: “nearly-decomposable” systems

Simon (1962) also proposed the concept of the nearly decomposable system by observ-
ing that, in hierarchical systems, two different types of interaction of elements can
be distinguished: among subsystems and within subsystems. If the magnitude of all
or most important interactions among primary elements of a system are measured
and recorded, it is possible to construct a matrix of interactions which would have
the property of being nearly decomposable if the system is hierarchically structured.
Informally, a decomposable matrix is a matrix containing elements that could be as-
sembled into clusters having interactions within elements of their own cluster, but
no interactions among elements of different clusters. A fully decomposable matrix
would therefore represent a collection of independent subsystems which do not in-
teract with each other. Another extreme is a system where all primary elements are
interacting with the same intensity, i.e. the matrix of their interactions is not only

18 Chapter 2. A quest to understand

fully non-decomposable, but also all elements are of similar size. Such system is flat –
i.e. it cannot be described by a structural hierarchy.

At least some of the systems can be approximated as nearly decomposable sys-
tems, which implies that the behaviour of each of their component subsystems (as-
semblages of elements) is approximately independent of the behaviour of other com-
ponents (Simon, 1962). Near-decomposability has been observed in the broad vari-
ety of systems ranging from “natural” (produced by evolution) to “artificial” (pro-
duced by the human activity), and the ones in between. The concept has been stud-
ied in terms of economic and social structures, genetic and developmental biological
models, physical and computing systems, and brains. Particularly interesting is the
study of complex computing systems as nearly completely decomposable systems
(Courtois and Ashenhurst, 1977).

A simple example suits well for understanding the concept of near decompos-
ability and investigating how it relates to the architecture of complexity. Suppose
that a hierarchical system under investigation is a house of a few rooms, each equipped
with separate cubicles (Figure 2.3a). We can define and measure interactions be-
tween cubicles in terms of the magnitude of heat exchange between them, which
could be represented in a matrix form (Figure 2.3b).

(A) House plan

(B) Matrix representation of cubicle interactions in terms
of heat exchange.

FIGURE 2.3: Illustrative example of heat exchange between cubicles
and rooms in a house as a hierarchical system (adapted from Simon

(1962).

The matrix in Figure 2.3 is near decomposable because it can be arranged into
clusters of elements which interact much more intensely among each other than all
the other elements. Obviously, in the house example such patterns are caused by
the thermal insulation properties of walls between rooms and separations between
cubicles. While it is somewhat a stretch to think of a house as a complex system, the
same principles apply. Importantly, decomposability allows one to determine the
hierarchical structure of the system without knowing its plan or blueprint – provided
we can measure intensity of interactions among elements (Figure 2.4).

2.2. Evolution of body, brain and mind 19

FIGURE 2.4: Hierarchical structure of heat exchanges in the house -
note the resemblance to a diagram of global dynamics in a hierarchy,

by Tëmkin and Eldredge (2015) (Figure 2.2).

Drawing on the above description, we can make a few interesting observations:

• First, if it were possible to calculate a single measure of "decomposability" d of
a system, all systems could be positioned on a "continuum of decomposability"
of a form d ∈ [0, 1] where d approaches 0 when a system is near-decomposable
(i.e. hierarchical) and 1 when it is ’flat’. Most systems cannot be said to be fully
hierarchical or fully flat even if considering only one modality of interactions
between elements. An example of a different modality of interaction in terms
of an example with a house would be an exchange of air-flows between cubi-
cles. A more realistic complex adaptive system may involve many modalities
which could entail different hierarchical structures – see also Section 2.2.3.

• Second, the description of the hierarchical nature of a system depends on the
time-scale of the measurements of interactions between elements. These two
aspects are of greatest relevance to complex adaptive systems, which are highly
dynamic – i.e. the magnitude of interactions between their elements is con-
stantly changing. In such systems the measure of decomposability d may dif-
fer substantially depending on when the measurements are taken. Moreover,
since the measurement of interactions necessarily involves a period of time
during which the number of interactions is measured, the measure d also de-
pends on the chosen time-scale of analysis. In other words, the short-term
structure of the system may be different from the long-term structure and the
former may inform little about the latter (Simon, 1962; Veitas and Weinbaum,
2017).

• Third, even if the "total decomposability" d of a system stays the same across
different "snapshots" in time, the structure of clusters of interacting elements
could be entirely different.

• Fourth, but not the least at all, the hierarchical structure is grounded solely in
interactions among elements of the lowermost level. Heat exchanges among
rooms are sums of the exchanges between cubicles of respective rooms across
their boundaries (i.e. walls) – see Figure 2.4. It is easy to miss the importance
of this observation in the example of a house with clear physical boundaries
between assemblages of cubicles (i.e. rooms), where we could simply omit the
level of cubicles and measure directly the heat exchange between rooms – thus

20 Chapter 2. A quest to understand

assuming the existence of real physical interactions on this level. Yet suppose
a different and much more complex and adaptive system – a brain. Here, we
can also distinguish three hierarchical levels: (1) individual neurons, (2) dis-
tinct brain areas (primary visual area, Wernicke’s area, Broca’s area, etc.) and
(3) the whole brain. Yet interactions among areas cannot be explained without
referring to the intensity of interactions on the neuronal level. There are no
clear boundaries, "gateway" neurons or "walls" which would allow the mea-
surement of interactions between areas directly, as in the case of the rooms
of a house4. The importance of this nuance becomes clear when considering
modelling and simulation of emergence of higher level hierarchical structures
from interactions of lower elements and explaining the influence of interac-
tions among the higher level structures on the overall system dynamics (see
Chapter 3).

A conceptually similar measure to the suggested notion of decomposability d
was proposed by the neuroscientist Tononi (2004) in the form of integrated informa-
tion Φ, which will be discussed later in Section 2.3.5. In short, Φ formally defines
coordinated clusters in networks of interacting agents across time and space (Wein-
baum and Veitas, 2017a) and is used by Tononi (2004) in developing an integrated
theory of consciousness. Intuitively, “[a] subset of elements within a system will con-
stitute an integrated process if, on a given time scale, these elements interact much
more strongly among themselves than with the rest of the system” (Edelman and
Tononi, 2000). Furthermore, the first and second observations hint at the importance
of the subjective perspective of the observer in seeing a system’s hierarchical struc-
ture – an issue discussed further in Section 2.2.3 (in the context of model building)
and Section 5.2.5 (in the context of computational models).

Functional hierarchies

Functional hierarchies are observed when complex adaptive systems are analysed
from the perspective of how their dynamics are generated – i.e. how they “work”
rather than how they “look”. One of the early accounts for functional hierarchies in
planning and carrying out complex behaviour sequences was proposed by Miller,
Galanter, and Pribram (1960) and is based on a cybernetic perspective. First, it de-
scribes the “fundamental building blocks of the nervous system” – negative feed-
back loops – in terms of test-operate-test-exit (T.O.T.E) units (see Box 2.2). A T.O.T.E
unit realizes the cybernetic principle of achieving a successful goal-directed action
by integrating feedback from “outside the unit” into whatever mechanism carries
out the action “inside the unit”. The mechanism of complex behaviour is explained
in terms of nested hierarchies of T.O.T.E units, where each operational component
of a unit is itself a full T.O.T.E unit which realizes the negative feedback principle
at a lower level (see Figure 2.5b in Box 2.2). Similarly, the perceptual control the-
ory developed by Powers (1973) describes nested hierarchies of negative feedback
loops regulating the matching of an organism’s perceptions with environmental sit-
uations. Perceptual control theory differs from the control theory in engineering as
well as simple treatment of negative feedback in that it emphasizes complex interac-
tions between hierarchical levels: organisms act on their surroundings and environment
so as to control the effects the environment is having on them. Another account for

4Yet when several brains communicate between each other we again see ’real’ boundaries separat-
ing one human from another.

2.2. Evolution of body, brain and mind 21

functional hierarchies inspired by the theory of natural evolution was proposed by
Campbell (1974, 1997) in terms of “nested hierarchies of vicarious selectors” (as ex-
plained in the Section 2.2.1).

Box 2.2: Nested T.O.T.E units – cybernetic description of functional hierar-
chies

The concept of T.O.T.E units as models of negative feedback and their nested
hierarchies (Miller, Galanter, and Pribram, 1960) is based on an implicit pre-
sumption that actions, behaviour and underlying mental strategies are closely
related to the goal-oriented feedback loops. It maintains that actions of an or-
ganism (including mental actions) revolve around having a fixed goal and a
variable means to achieve that goal. A simple T.O.T.E scheme indicates that
a given behaviour is regulated by setting a goal, developing a test for figuring
when the goal is achieved and then performing operations with the available
means in order to change either the state of the system or the state of environment
(Figure 2.5a). When test criteria are finally satisfied, the process exits.

(A) Basic T.O.T.E scheme. A cybernetic system accepts
input from environment and produces output to the en-
vironment. It has a fixed goal (internally represented by
a test) of changing inputs to certain outputs and vari-
able means to perform such operation. The system se-
lects and tunes the operation for achieving its goals via
an "operate ⇔ test" loop by performing the operation
internally and checking results against test criteria. The
loop is exited when test criteria are satisfied – i.e. the

output matches the goal of the system.

(B) Nested hierarchy of basic structures.

FIGURE 2.5: Graphical description of the test-operate-test-exit
concept, adapted from Dilts and Delozier (2000, p. 1434).

Taking into consideration that the output ("exit") of a simple T.O.T.E unit
can be the input to the higher level T.O.T.E unit, the general model of a func-
tional hierarchy composed of T.O.T.E units and corresponding subgoals can
be established (Figure 2.5b). The T.O.T.E model, despite its apparent simplic-
ity, lies quietly at the roots of cognitive psychology and cognitive science and,
remarkably, the symbolic perspective to intelligence and artificial intelligence.

A perspective which brings about the concept of functional hierarchies goes to-
gether with evolutionary thinking, which does not allow one to lose sight of how
these hierarchies emerge in the first place. The general theory which deals explicitly
with the emergence of control hierarchies in the process of evolution is the meta-
system transition theory (Joslyn, Heylighen, and Turchin, 1992). A meta-system
transition – the term coined by Turchin (1977) – is an evolutionary event which
brings about a higher level of organization in a complex adaptive system. From
the structural point of view, the new level can be said to integrate two or more sub-
systems at a lower level and in this sense is a metalevel with relation to them. From
the functional point of view, the higher level is said to control the activity (variation)

22 Chapter 2. A quest to understand

of the subsystems at the lower level. Described in this way, a metalevel brings about
qualitatively new behaviours which cannot be described in terms of characteristics
of lower levels alone. Functional hierarchies emerge as a result of variation, repli-
cation and selection and can be described as nested levels of increasing control of
processes happening within the system.

Box 2.3: Meta-system Transition Theory

A metasystem transition is a process in the course of which an initial sys-
tem S gets replicated (with possible variations) into systems S1, S2, ..., Sn.
The transition is guided by and simultaneously brings about a mechanism C
which controls the behaviour and production of the S1, S2, ..., Sn subsystems
(Figure 2.6).

FIGURE 2.6: The metasystem transition (Turchin and Joslyn,
1993; Turchin, 1977)

From the functional perspective each control level is associated with a cer-
tain activity or aspect of a system. A metasystem transition creates a new type
of activity A′ by controlling the activity A of "lower" levels:

control ofA = A′ (2.2)

Turchin (1977) describes human evolution as a series of metasystem tran-
sitions:

• control of position = movement;
• control of movement = irritability (simple reflex);
• control of irritability = (complex) reflex;
• control of reflex = associating (conditional reflex);
• control of associating = (human) thinking;
• control of thinking = culture.

The history of life and the universe can be conceptualized as such a se-
quence of meta-system transitions which lead to ever more complex, adaptive
and intelligent systems spanning physical, biological, social and cultural do-
mains. A meta-system transition can therefore be seen as a quantum of evolution
(Heylighen and Joslyn, 1995).

Metasystem transition is first and foremost a process, which is rather difficult to
grasp by the descriptions of its “initial” and “final” products alone. Even if it is
described as such, it can only be done retrospectively. We only see control struc-
tures and functional hierarchies after they emerge and consolidate, yet we often miss

2.2. Evolution of body, brain and mind 23

vocabulary and conceptual tools for grasping the intermediate states and circum-
stances that guide the consolidation and dissolution of such structures in complex
adaptive systems.

Flat systems

Depending on how many hierarchical levels are observed (structural or functional)
in a given system, it can be described as having a "flat" or "deep" hierarchical struc-
ture. For example, the house of Figure 2.3 has two lower scale hierarchical levels
– rooms and cubicles. If, however, there were no rooms and the whole space was
divided into cubicles, it would have only one lower hierarchical level and therefore
would be completely "flat". Simon (1962) refers to hierarchical systems as "flat" at
a given level if the number of non-differentiated components at that level is large
(i.e. if it has a wide span). A completely "flat" system from the hierarchical perspec-
tive would be one where an observer was not able to identify any structure at all.
As much as we tend to understand systems in terms of their hierarchical structures,
there are many systems that do not have one – examples of natural systems which
can be regarded as such are gas, crystals, diamonds (ibid.) or a primordial soup of
elements at the dawn of life. "Flat" systems are also non-decomposable (see page 17).
This means that there is no way to determine their "actual" structural or functional
hierarchy because there is none in the first place. But does that mean that there is no
way for an observer to make sense of a "flat" system?

Any observable system, "flat" or "deep", is also a subsystem of a larger milieu;
therefore its detection is a matter of the degree of decomposability of that milieu.
Even considering an example of a house with concrete walls, there are still heat ex-
changes and air flows which permeate these boundaries – i.e. system-environment
interaction. There are systems, however, where boundaries are much more fuzzy
and identification of the system itself is not straightforward – just as the decompos-
ability of a complex adaptive system into hierarchical levels is not straightforward.

2.2.3 Hierarchies are not enough

First, let us see why the issue of hierarchies is considered important enough for such
rigorous attention. It is because hierarchy in the broadest sense is brought about by
an ability to distinguish and categorize – events, objects, processes, perceptions of
the world – by an observer. In this sense hierarchy represents order and the absence
of hierarchy is equivalent to disorder. In this sense creating order from disorder,
which is a process of becoming intelligent, can be said to be equivalent (or at least
closely related) to the process of seeing (or creating) hierarchies where there were
none before.

The importance of a subjective perspective

In order to answer the question of what it means to make sense of a "flat" system, it
is useful to think about what it means to understand (a system). Obviously, under-
standing (or making sense) always involves two parties – a system or environment
which is being made sense of and an observer or an agent which is the one that
makes sense. Classically, systems are considered as well defined and static structures

24 Chapter 2. A quest to understand

which are objectively given, but complex adaptive systems such as brains, markets
and societies tend to be fuzzy, variable and to a certain degree “subjective” (Hey-
lighen, 2011, p. 2). I would like to propose a working definition of subjectivity in
this context: a description of a system is “subjective” when it is decomposable in hierarchi-
cal terms only by using extrinsic discriminating criteria (i.e given from outside the system);
different discriminating criteria result in dissimilar decompositions.

The discussion of this definition and its rationale is provided in Chapter 3 with
reference to the open-ended intelligence concept. For now, let us take into account
the importance that the subjective perspective plays in the process of sense making
and becoming intelligent.

The power and trouble of model building

The power of the concept of hierarchy is based on the empirical observation that for
many natural systems, a hierarchical description considerably increases their com-
prehensibility (Simon, 1962). For example, it is counter-productive to try to describe
interactions between every citizen of a country with citizens of another country in
order to understand international relations. Likewise, the higher behaviour of an
animal or a human cannot be comprehended (or even grasped) only via decipher-
ing and mapping interactions among all the neurons in their brains. Yet any gain
in comprehensibility is always accompanied by a certain amount of loss of informa-
tion about the system being described, even when the system is trivial. It is there-
fore important to remember, especially given the natural tendency of cognition to
search for stable patterns and invariant representations in otherwise not necessarily
ordered sensory input (Hawkins and Blakeslee, 2005), the existence of this funda-
mental trade-off between comprehensibility and loss of information. On a highly
conceptual level the phenomenon of understanding is closely related to the choice of
this trade-off, which is less trivial than often assumed.

We usually estimate the quality of our models by measuring their predictive
power – i.e. how precise is the information a model or a representation gives about
the structure and dynamics of an actual system. Consider for example an agent
embodied into an environment and possessing a cognitive system. For the sake of
illustration let the agent be an animal, its environment - the subspace of physical
reality with which an animal interacts and the cognitive system – its nervous sys-
tem. One of the major aspects that allows an animal to persist and thrive in a given
environment is that its cognitive system has capacities to propose adequate actions
in most of the environmental situations and contexts. Such capacities are directly
related to the predictive power of the internal model of the environment. Yet a pre-
cise representation of the environment is not feasible – an animal (as any bounded
system for that matter) has a limited memory and therefore the whole sensory space
resulting from interaction with the environment has to be efficiently modelled (com-
pressed, represented) in order to fit into its memory5. Furthermore, an adequate action
in an environmental situation implies the correct timing of the action – very often
the timing of an action is more important than the type of the action (consider the
classical fight or flight dilemma when faced with a mortal danger). To complicate the
picture a bit more, there is no general way to determine the timing requirements of

5Such ability can be expressed as a mechanism to come up with the representation that has reason-
ably small Kolmogorov complexity (Li and Vitanyi, 1997).

2.2. Evolution of body, brain and mind 25

an action in advance – i.e. a cognitive system has to be able to estimate when to stop
thinking and start acting "in real-time", as the situation evolves.

Here we will concentrate on three major aspects that determine the predictive
power of a model: (1) selection for relevance – which properties and variables out of
all available options are included in the model; (2) the degree of decomposability of a
system – how much of a system’s behaviour can in principle be reasonably explained
by a single model; (3) the structural efficiency of a model – how well a selection of
properties and variables can be organized in order to achieve the same or higher
level of predictive power;

These aspects determine the trade-off between the level of comprehensibility of-
fered by a model and the degree of loss of information about a system in the process
of making sense of it.

The degree of decomposability

As suggested on page 19, any system can be characterized by its degree of de-
composability. The degree of decomposability of a system is its natural property –
i.e. some systems are near decomposable and therefore allow for being represented
in terms of structural or functional hierarchies with a relatively small amount of in-
formation loss, while others do not. Most physical systems are nearly decomposable
and this fact alone has contributed immensely to the success of the scientific method.
Yet there are complex systems which are not easily decomposable without significant
loss of information. Non-decomposability is particularly characteristic of a class of
complex which are composed of interacting heterogeneous agents, e.g. society, brain,
world-wide-web, multi-agent computing systems and many more. Consider soci-
ety: it is always the case that an individual is a member of more than one group
or “category” (professional, sports, hobby, family, etc.) which cannot be easily ac-
commodated together (Veitas and Weinbaum, 2017). These systems are of particular
interest since I believe that comprehending (or making sense of) non-decomposable
complex adaptive systems is the major ability of cognitive systems and intelligence
at large. This at least means that we should not take the relatively high degree of de-
composability of natural systems for granted – and that the mechanism of making
sense of complex systems should be able to cope with any degree of decomposabil-
ity.

Selection for relevance

Luckily, there is a way to make sense of a non-decomposable system – by selectively
disregarding parts of information about it. Non-decomposable complex adaptive
systems can be described and comprehended only by selecting some of their proper-
ties that are significant for the purposes of the subject which interacts with the system.
The fact that decomposable or near-decomposable systems have “objective” criteria
for selecting the properties and variables which allow for a very precise description
of their overall behaviour should not foreshadow the need to select these variables
from all available options. Such selection implies the need for criteria which can
only be accounted for by considering how relevant they are for an agent making the
selection decision. First of all, this introduces the necessity to consider the subjec-
tive aspect of modelling when dealing with complex systems. Second, it hints that

26 Chapter 2. A quest to understand

criteria of selection may differ across different subjects depending on their goals,
which often are not uniform. Third, selection criteria of the same agent may differ in
different environmental situations.

The process of selecting criteria for decomposing a given system into a hierarchi-
cal structure is closely related to what has been called selection for relevance in cog-
nition (Weinbaum, 2013). Selection for relevance is an attention mechanism which
accounts for a choice of attending to certain aspects of the sensory space available to
a cognitive system while relatively downplaying others. Let us define the effective
sensory space as the totality of all sensory inputs of a given intelligent animal. The
virtual sensory space is then the totality of all possible sensory inputs that can be
used for perceiving the physical reality. For example, humans heavily rely on vision
for understanding the world, while bats mostly use ultrasound and echolocation –
they operate in different species-level effective sensory spaces, which nevertheless
are sub-spaces of the overall virtual sensory space of the physical reality. Evolution
is a general mechanism of selection for relevance in terms of reducing the virtual
sensory space of the physical reality to the effective sensory space of a concrete cog-
nitive system. Likewise, at every moment and in every environmental situation, an
embodied cognitive system has the task of reducing its effective sensory space into
a unique combination of sensory inputs that leads to a decision and an action that
make sense in that situation. Yet even a single individual cannot constantly keep
full track of its own effective sensory space, at least due to the resource constraints
of time and memory. A consideration that a decision for an action in a specific en-
vironmental situation is a type of knowledge, and an approach that cognition is a
special case of evolutionary process of creating knowledge (see Section 2.2.1) leads
to the appreciation of the importance of selection for relevance in cognition. Not
surprisingly, therefore, attentional mechanisms – which are actual implementations
of selection for relevance in cognitive systems – are an important aspect of research
in psychology, cognitive science and AI. Even so, the selection for relevance aspect
of cognition and, moreover, its evolutionary nature, are largely neglected aspects of
cognitive systems research.

Structural efficiency

The structural efficiency of a model is a measure of how well given sensory knowl-
edge about a system is decomposed in terms of maximizing comprehensibility while
at the same time minimizing loss of information. It is related to the “optimization”
aspect of model building – the most researched and discussed aspect of science and
cognitive systems research which deals with finding the best model "fit" for a given
set of information about an actual system. Note that structural efficiency here is de-
fined not as a measure of the best model of a system, but as the best model of available
information about a system. This is a crucial difference that takes into consideration
the selection for relevance mechanism that prunes part (and maybe most) of the in-
formation about a system in order to arrive at the amount manageable by the specific
embodiment of a cognitive system6.

6See Section 2.3.3 on page 46 for an information-theoretical treatment of this process in terms of rate
distortion theory.

2.2. Evolution of body, brain and mind 27

Heterarchy

Heterarchy is a concept that accounts for the impossibility of describing interactions
among a system’s elements by positing a single system of hierarchical relations be-
tween them. A hierarchy is a structure of coordination among multiple agents in a
system in which an agent does not constrain other agents, by which it is itself con-
strained. In contrast, a heterarchy is a structure of coordination among the same
multiple agents in which an agent may simultaneously constrain and be constrained
by other agents (Weiss, 1999). McCulloch (1945) has introduced and used the con-
cept of heterarchy for explaining the reasonably ordered, yet non-hierarchical orga-
nization of the brain and cognitive structures. Another definition of heterarchy de-
scribes it as a relation of elements to one another when they are unranked but when
they possess the potential for being ranked in a number of different ways (Crumley,
1995).

In other words, heterarchies are networks of mutual influence without subordi-
nation (Heylighen, 2002a) yet with the potential of “collapsing” into a structure of
coordination that allows a system to perform computations or actions in a concrete
context. This process of “collapsing” into a structure of coordination is the process
of individuation (see further Section 3.2), where order emerges from disorder. We
could say that three aspects play their part in this process – (1) initial conditions –
i.e. the organization of "networks of influence without subordination"; (2) the emer-
gent structure of coordination that is observable after the process; (3) the process of
emergence itself. One of the most interesting findings of complex systems research
is that self-organizing systems are able to perform the most sophisticated computa-
tions when operating at the boundary between randomness – i.e. first aspect – and
order – i.e. second aspect (Crumley, 1995). Actually, the computation itself can be
said to emerge from this boundary – hence the term emergent computation (Minati,
Pessa, and Abram, 2009). While the focus of this work is conceiving and imple-
menting a computational framework that accounts for all three aspects, we consider
the process of emergence – i.e. the third aspect – as the most important and most ne-
glected – perhaps due to the difficulty of approaching it. Furthermore, the subjective
aspect of selection for relevance (see page 25) is instrumental for conceiving such a
framework.

The fundamental trade-offs

Based on the above I suggest that a major aspect of intelligence relates to dealing
with a fundamental trade-off between comprehensibility of a system’s environment
and the information loss about its "true" nature at each moment of comprehension.
We can relate this to another fundamental trade-off, which is the primary problem
solved by the whole field of computer science: the trade-off between memory and
time of computation. The relating link is the concept of bounded rationality, desig-
nating the rational choice of an agent operating in an environment while taking into
account its own cognitive limits in terms of knowledge and computational capac-
ities (Simon, 1982). Computational capacity (equivalent to the term computational
complexity in this context) is defined by the time and memory (space) required to
perform a given computation. If we look to the act of comprehension as a compu-
tational task, the computational complexity of this task is on the one hand deter-
mined by the comprehensibility of the environment and information loss about its
"true" nature (the first trade-off). On the other hand, the computational capacity –

28 Chapter 2. A quest to understand

the amount of computational resources, needed for carrying out the task – is deter-
mined by the combination of time and memory (the second trade-off). Needless to
say that the computational capacity should match the computational complexity in
order for the task to be completed. Memory constraint is simply a natural charac-
teristic of a realistic cognitive system embodied in an intelligent animal or a digital
computer. Time is a constraint imposed by each and every environmental situation
in which a decision has to be made – e.g. making a move on a chessboard or start-
ing to run from a tiger in a jungle. Therefore, the relation between cognitive and
computational processes first of all assumes what is called ecological view of rational-
ity. This view emphasizes the relation between a cognitive system and environment
rather than a cognitive system and logic – since the structure of the natural envi-
ronment is ecological rather than logical (see Section 2.3.2 for further explanation of
the concept). In this sense, the situation determines the time constraint for a given
decision and the comprehensibility of the environment determines the amount of
memory (or computational/cognitive resources in general) needed for computation
and permissible level of information loss about its "true" nature. Balancing these
trade-offs allows a cognitive system to operate in an environment which is orders of
magnitude more complex than the system.

Information compression

Comprehending a system, understanding the environment, building a model of re-
ality, training a neural network, machine learning, statistical analysis, theory build-
ing, etc. – all these cognitive and computational activities can be seen as forms of
information compression. Conceptually, they are implementations of a general process
which takes an external complex, an unstructured and dynamic "corpus" of informa-
tion (e.g. input to a machine learning system or an environment of a sentient being)
and represents it in a much more concise form within a cognitive or computational
system which "owns" and "runs" the process. Two different general classes of infor-
mation compression processes can be distinguished: lossless and lossy compression.
They are best described in a somewhat formal manner for didactic reasons in Box 2.4,
but it should not prevent a view of the underlying principles in a broader sense.

Box 2.4: Lossy versus lossless information compression – definitions

Lossless information compression is the process which converts an arbitrary
long string of characters (or bits) S1 into another, strictly shorter string
of characters (or bits) S2 while preserving all information of the original
string so that if the process is performed on S2 in reverse, S1 is fully
reconstructed.

Lossy information compression is the process which also converts longer string
S1 into strictly shorter S2, yet loses some [non consequential] informa-
tion so that if the process is applied in reverse to S2, the string S3 is
obtained, which is similar, but not equivalent to S1.

The lossless information compression is well characterized by the measure of
Kolmogorov complexity which defines the theoretical upper bound on how much
a string can be compressed. More formally, the Kolmogorov complexity K(x) of a
finite object x is defined as the length of the shortest effective binary description of x,
where K(x) may be thought of as the length of the shortest computer program that

2.2. Evolution of body, brain and mind 29

prints x and then halts (Grünwald and Vitányi, 2010). But suppose that the available
storage resources do not allow the storage of even the theoretically optimally com-
pressed string; the only option in such a case is the lossy information compression –
which produces a shorter string at the cost of losing part of the original information.
A lossy information compression involves a trade-off of how much information can
be allowed to be lost in order to fit the result into a pragmatically viable amount
of memory (or – produce a shorter string of a given length). It is trickier to define
since it does not have a single implicit criterion of optimality. In the case of a lossy
information compression, an optimality criterion (i.e. cost function in rate distortion
theory) becomes a variable of a system which performs the compression rather than
and external globally defined constraint or overarching principle. See page 30 for
deeper treatment of this conceptually important, while at first sight subtle, distinc-
tion.

In summary, the cognitive operation of understanding tries to solve the dilemma
about which part of the original information to keep and which part to discard (se-
lection for relevance) together with figuring out the best representation of retained
information (structural efficiency). The solution to the dilemma can be found only by
considering relevant distinctions about which information is important and which
is not in a given environmental situation for a given cognitive system in a given em-
bodiment. Yet, despite an important account of the concept of lossy information for
understanding the process of understanding, at least two aspects of an ecologically
embedded cognitive system are not covered by them.

• First, recall that ecological (and bounded) rationality involves two constraints
which both have to be taken into account: memory and time. The measure
of Kolmogorov complexity and rate-distortion theory takes into account only
memory (or channel capacity). However, there is a metric of complexity which
considers the time aspect when accounting for lossless information compres-
sion. This metric is called logical depth and is best understood with relation to
Kolmogorov complexity. Recall that Kolmogorov complexityK(x) of an object
x is the shortest program (or the shortest binary description) that can generate
x. Logical depth LD(x) by Bennett (1995) extends this metric by defining the
time needed to compute x using its shortest binary description K(x). Inter-
preted in the context of a cognitive system, the logical depth metric comes
closer to considering the time needed to make a decision given the capabilities
and knowledge of a cognitive system (in information theoretical terms – the
time needed to decompress a compressed string to its original form).

• Another aspect is what is called sequential dependencies or sequential effects in
perception and memory. In general terms this means that a local decision of a
cognitive system depends not only on the current stimulus or environmental
situation but also on the history of preceding events. Sequential effects are ubiqui-
tous in human and animal behaviour and are experimentally very well estab-
lished across a wide range of domains, including stimulus detection, percep-
tual identification, probability learning and decision making (Jones et al., 2013;
Sims, 2016). We believe that sequential effects constitute a major aspect of eco-
logical cognition, having broad conceptual implications on understanding the
phenomenon of becoming intelligent. In the context of lossy information com-
pression, sequential effects mean that the specific cost function for determining
a trade-off between information loss and the length of the compressed infor-
mation are influenced by the history of previous choices of such cost functions.

30 Chapter 2. A quest to understand

It seems obvious that the behaviour of a cognitive system depends on its his-
tory, previous experiences and encountered environmental situations, which
are never the same for every cognitive system with a physical embodiment in
a complex world – human or animal alike. Likewise, the principle is widely
observed and applied in computer science and artificial intelligence where the
performance of machine learning systems depends largely on the data which
is used to train them. Yet this aspect is surprisingly often marginalized in sta-
tistical analyses as a random noise (Jones et al., 2013). The broad conceptual
treatment of sequential effects is developed further with the concept of pro-
gressive determination (Section 3.2.4).

Relation to open-ended intelligence

Let us now look at how the above concepts relate to the framework of freedom and
constraint in the light of how they may help to start conceiving a computationally
realisable mechanism of becoming intelligent. First, goal-directed intelligence can
be approached in terms of a lossy information compression with subjectively de-
fined criteria of optimality – i.e. with the goal determined outside the framework or
a priori given. It is not important in the sense that goal-directed intelligence consid-
ers the possibility of many goals in many environments – it still does not account
for the formation of goals themselves (apart from possibly inferring a hierarchy of
lower level goals from the overarching values – which are nevertheless given a pri-
ori). Conversely, the concept of open-ended intelligence encompasses the formation
of goals and, moreover, identities of agents which have these goals in the first place
as a single and inseparable process. Open-ended intelligence, of which goal-directed
intelligence is a special case, can be – with huge simplification for didactic reasons
– associated with framework of lossy information compression where the optimal-
ity criteria is determined within the framework and not a priori, i.e. "chosen" by the
system itself. If we imagine a working model of an intelligent agent based on the
concept of open-ended intelligence, the goals of such an agent would be variables of
the model, acquiring their values when executing an implementation of the model
but not defined exogenously.

An important note is due here. It is not possible to construct a direct implemen-
tation of open-ended intelligence. The goal of this work is nevertheless to show
the possibility of "reducing" the highly abstract philosophical framework into po-
tentially implementable ideas and thus inform the discourse about artificial gen-
eral intelligence (see Section 2.1). Performing this operation will necessarily involve
considering and introducing certain assumptions which are not warranted by the
philosophical framework, yet are needed for closing it (as in “closure”) just enough
to conceive a computational model and possibly an implementable architecture of
AGI based on it. For example, open-ended intelligence does not assume agents be-
fore actual interaction happens. Furthermore, agents with their identities are assem-
blages of interacting heterogeneous components at a lower scale (Weinbaum, 2013;
Weinbaum and Veitas, 2017b). In the philosophical framework this forms an infinite
regress where the identity of every agent emerges from interaction of lower level
agents. Yet, in order to conceive a computational architecture or a working model,
one has to posit the existence of elementary components, interaction of which gives
rise to further agencies and identities.

Based on the above we can start conceiving broad requirements for the cognitive

2.2. Evolution of body, brain and mind 31

architecture based on the open-ended intelligence framework. First, such architec-
ture should allow for the emergence of identities of higher order cognitive agents
from the interaction of lower level heterogeneous components. Second, the architec-
ture has to account for the [at least partial] ability of the emergent cognitive agents
to perform the selection for relevance operation by themselves.

2.2.4 Co-evolution of structure and function

When considered in general systemic terms, evolution of body, brain and mind is a
special case of evolution of assemblages of systemic components which give rise to
structural and functional hierarchies. Yet, as the preceding discussion has shown,
functional and structural hierarchical descriptions cannot be decoupled from each
other without losing at least some properties of a system being described. More-
over, emergence and development of structural and functional hierarchies within
a system implies interaction between them – evolving functions influence the de-
velopmental trajectory of structures, while evolving structures further influence the
development of functions. This principle later will be conceptualised in terms of the
model of progressive determination (Section 3.2.4). In this section we will discuss
selected interdisciplinary domains each of which are knowingly or unknowingly as-
sociated with this principle. I am confident that this list is very incomplete.

Evolutionary development

Evolutionary development (Evo Devo) is a branch of systems thinking that holds
the view that evolutionary processes on the one hand – which are stochastic, variety-
creating, divergent and contingently adaptive – and developmental processes on the
other – which produce convergent and systematically statistically predictable struc-
tures in a development cycle – operate together in a productive tension in order to
produce change in complex adaptive systems, including, but not limited to, living
systems and organisms (Smart, 2015, 2017). Generally systemic Evo Devo think-
ing grew out of evolutionary developmental biology (Evo-Devo) which, in its turn,
had its origins in the comparative embryology of the nineteenth century (Wallace,
2002). The major proposition and argument of evolutionary developmental biology
is that the development of embryos is shaped by their phylogenetic and ontogenetic
developmental trajectory no less than selective pressures or inductive interactions
within an embryo (Kalinka and Tomancak, 2012). A developmental trajectory itself
is shaped by many interactions – between individuals of the same species, different
species, species and their environment, etc. – which are very complex (Hall, 1999). In
other words, every and each phase of development is influenced by developmental
constraints, contingently emerging in the course of the previous phase, as well as the
myriad interactions inside and outside the boundary of an embryo – a developing
living and complex adaptive system.

Developmental and selective constraints

What are called developmental constraints represent a bias on the production of variant
phenotypes or a limitation on phenotypic variability caused by the structure, char-
acter, composition, or dynamics of the developing complex adaptive system (Smith
et al., 1985). Developmental constraints modify evolutionary future at every point

32 Chapter 2. A quest to understand

in the process and therefore introduce a bias on what kind of developmental con-
straints further arise. Approached from the perspective of progressive determina-
tion of developmental constraints in an evolutionary process the “nurture versus
nature” debate loses at least some of its tension, because whatever constraints are
stored within an organism are the result of the interaction between an organism and
its environment at some stage of the evolutionary developmental process. This also
implies that the very boundary between an organism (whether in terms of its geno-
type or phenotype) and environment is determined during, inside, and because of
the process of evolutionary development rather then exogenously.

Niche construction

The crux of classical evolutionary frameworks of natural selection, such as the uni-
versal selection theory of Campbell (1997) (see Section 2.2.1) is the principle that
living systems evolve via blind variation of their features and selective retention
of those which lead to successful skills and behaviours in an environment. The
framework is based on two strong implicit and intertwined premises: (1) that the
environment is (at least largely) stable and (2) that developing organisms do not in-
fluence their environment. Yet if we realize that the environment of an evolving and
developing organism is composed of other evolving and developing organisms, it
becomes obvious that we are looking at interactive co-accommodation rather than
one way adaptation. Adaptation is such a powerful explanatory paradigm because
mutual influences among organisms and their assemblages are far from symmetric.
For example, the biosphere of a certain planet called Earth can be considered a liv-
ing and evolving organism, yet the time-scale of development of this biosphere is so
different from the time-scale of, say, a mammalian life form, that thinking in terms
of adaptation of the latter to the former is a good enough approximation of what
actually is a mutual interaction7.

The theory of niche construction – a term coined in the late 1980s by Odling-Smee
(1988) – addresses precisely this dynamic. Niche construction is the generalized pro-
cess where organisms actively modify their own and other organisms’ evolutionary
niches while simultaneously adapting to them. An evolutionary niche is defined as
the sum total of all the natural selection pressures to which a population is exposed
(Odling-Smee, Laland, and Feldman, 2013) – a concept closely associated with what
was called an "effective sensory space" of an organism on page 26.

The four key tenets of niche construction theory are (Laland, Matthews, and
Feldman, 2016):

i. organisms impose a systematic bias on the selection by modifying environ-
mental states in non-random ways – thus exerting influence over their own
evolution;

ii. parents influence the ecological niche of their offspring thus contributing to
parent-offspring similarity; this gives rise to ecological inheritance, operating be-
sides and together with genetic inheritance;

iii. acquired characters and by-products become evolutionarily significant by af-
fecting selective environments in systematic ways, and;

7Yet the global climate change is the evidence of how some mammalian forms can influence the
biosphere.

2.2. Evolution of body, brain and mind 33

iv. the complementarity of organisms and their environments (traditionally de-
scribed as "adaptation") can be achieved through evolution by niche construc-
tion.

An important aspect of the theory, which attracted a fair amount of criticism
from standard evolutionary theorists and a subsequent debate, is that niche con-
struction is not predictive, at least not in a strict sense – because it can lead to both
long term increase or decrease of fitness (Scott-Phillips et al., 2014). Developmen-
tal processes of niche construction channel selection along particular evolutionary
pathways which individuate during the process itself and, therefore, are at least
partially unpredictable. Indeed, niche construction theory emphasizes that "organ-
isms actively contribute toward both the construction and destruction of their own
and each other’s niches" (Odling-Smee, Laland, and Feldman, 2013) and that both
these directions should be taken into account. Precisely such a dynamic, yet in much
more abstract terms, is addressed within the philosophy of individuation and theory
of assemblages (see Section 3.2.2).

Besides biological evolution, niche construction theory has found a fertile ground
in psychology and cognitive sciences. Concepts like cultural niche and cognitive niche
relate to environmental aspects of non-biological origin, which have an important
influence on human evolutionary dynamics (Pinker, 2010). These aspects are clearly
shaped by human behaviours, and therefore some theories in cognitive science started
to focus on the active role of organisms in shaping their own cognitive niche – collec-
tively and individually. Approaches of situated, embodied, ecological, distributed,
extended and enactive cognition look beyond "what is inside a person’s head" to
"what a person’s head is inside of" and with which it forms a larger whole (Clark
and Chalmers, 1998; Di Paolo and De Jaegher, 2012; Stotz, 2010).

Developmental Systems Theory

Developmental systems theory (DST) is the general theoretical perspective on bio-
logical development, heredity and evolution – a framework for conducting scien-
tific research and understanding the broad significance of its results. DST tries to
disassemble dichotomies of "nature versus nurture", "genes versus environment",
"biology versus culture" by viewing development and evolution as a "process of con-
struction and reconstruction in which heterogeneous resources are contingently, but
more or less reliably reassembled for each life cycle" (Oyama, Griffiths, and Gray,
2001). DST understands organisms as autocatalytic systems – systems which are
able to self-organize and self-maintain not because they are adapted to the environ-
ment (Gontier, 2006), but due to inner mechanisms that enable them to self-maintain
a metastable homeostasis within boundaries of survival – sometimes despite the en-
vironment.

While DST grew out of the application of general systems theory to embryol-
ogy, epigenetics and developmental psychology (Griffiths and Tabery, 2013), it can
be considered a broad scientific paradigm, also referred to as developmental science. As
such, DST has been applied to developmental psychology, biological systems the-
ory, econometrics, systems science, psychometrics and more. Additionally, there
are strong conceptual links between DST and other theoretical models and research
methodologies, such as dynamical systems, artificial neural networks, connection-
ism, theoretical systems modelling, simulation modelling, system dynamics, social

34 Chapter 2. A quest to understand

network analysis and agent-based modelling (Molenaar, Newell, and Lerner, 2013).

Oyama (2000), a major proponent of the DST paradigm, has systematically de-
veloped the idea that developmental information is actually produced during de-
velopment – i.e. information has an ontogeny and a developmental history (Griffiths and
Tabery, 2013). Building on this idea alone turns developmental science and DST
into a scientific paradigm deeply associated with the process philosophy and phi-
losophy of individuation. A major question of any scientific investigation, perhaps
mostly palpable in the context of evolutionary theory, is how a form arises. Oyama
(2000) distinguishes three avenues for approaching the question:

i. "Preformationist" attitude: there is a single causal source which defines a pri-
ori any form – a process that brings it into existence is merely mechanics of un-
foldment of already existing information. This perspective is embraced by the
view that genes or any single principle are responsible for organismic forms.

ii. "Interactionist" attitude – there are several causal sources which interact in a
complex way in a process of unfoldment of a form, the main question being
what these sources and their relative influences are. Similar to the "preforma-
tionist" attitude, information exists a priori, but in a distributed fashion. This
perspective is embraced by epigenetics.

iii. "Constructivist interactionism" – there are no prior causes or sources of infor-
mation preceding the developmental process which results in a form. Evolu-
tionary development is not a process that takes information as an input from
one or more sources and combines it into a form – information itself develops
during the process.

Obviously, DST embraces the "constructivist interactionist" attitude:

Developmental information [...] neither preexists its operations nor arises from ran-
dom disorder. It is neither necessary, in an ultimate sense, nor a function of pure
chance, though contingency and variation are crucial to its formation and its function.
Information is a difference that makes a difference (G. Bateson, 1972, p. 315), and
what it “does” or what it means is thus dependent on what is already in place and
what alternatives are being distinguished (ibid.).

Although never mentioned by Oyama (ibid.), the "constructivist interactionism"
attitude fits perfectly within Simondon’s theory of individuation (see Section 3.2),
which is much more general and not per se coupled with evolutionary biology. At the
core of the theory of individuation and the entire Simondonian ontology is the phi-
losophy of information as a new "systemic and not cybernetic" theorization (Barthélémy,
2015; Simondon, 2009).

Complexity science and self-organization of complex adaptive systems

Complexity is the paradigm within science and philosophy that studies general-
systemic principles of dynamic, evolving and developing (in terms of structure and
function) systems, i.e. complex adaptive systems (CAS). CAS are characterized by com-
plex patterns of behaviour which emerge from interactions among a large number
of component systems (agents) at different levels of organization (Ahmed, Elgaz-
zar, and Hegazi, 2005; Chan, 2001; Gell-Mann, 1994). Outcomes of a huge number
of interactions are most often unpredictable due to their non-linear character. Still,

2.2. Evolution of body, brain and mind 35

these interactions are able to spontaneously coordinate among each other – there-
fore, complex adaptive systems are said to self-organize instead of being organized or
designed.

Self-organization is the appearance of structure or pattern without an external
agent imposing it (Heylighen, 2001b). Importantly, self-organization is caused by a
certain amount of disorder and fluctuations in a system – as formulated by principles
of “order from noise” by Heinz von Foerster and “order from fluctuations” by Ilya
Prigogine (ibid.). These principles point to an important understanding that fluidity,
disorder, fluctuations and uncertainty are not undesirable side effects which should
be minimized, but actually are necessary for a complex adaptive system to evolve
and thrive. We can visualize a process of self-organization as a series of symmetry-
breaking bifurcations of a complex adaptive system operating "at the edge of order
and chaos":

One might expect that the problem of how nature generates pattern and form would
be to explain how symmetry arises out of chaos and disorder. But in fact, disorder is
much more symmetrical than order. If a beautiful bronze sculpture is melted down
into a uniform pool of liquid metal, its form and structure are lost—but it gains a great
deal of symmetry. Thus the question of the genesis of form is not how symmetry
arises out of disorder, but rather how the symmetry of disorder gets broken in deter-
minate ways to produce the characteristic asymmetries of the forms we find in nature
(Brender, 2013, p. 267).

Complexity science as a whole is still mostly a collection of exemplars, meth-
ods and metaphors of modelling complex adaptive systems without a generally
accepted definition (Heylighen, 2009a; Mitchell, 2006). Despite the difficulties in
formalizing the notion of complexity, CAS can be characterized by somewhat more
intuitive features, the major of which are:

i. Complexity must be situated in between order and chaos, sometimes called an
"edge of chaos". Since complex systems are neither regular or predictable, nor
random or chaotic, a number of theorists have proposed that the precarious
balance between order and chaos is precisely what is necessary for adaptation,
self-organization, and life to occur. Complex adaptive systems tend to evolve
spontaneously towards this balance.

ii. Complex systems consist of many components that are connected via their
dynamic interactions (not static or clearly definable links or relations). These
components can be said to be partly autonomous while at the same time partly
mutually dependent.

iii. Dynamic interactions among many heterogeneous components give rise to
emergence – behaviours and properties at the scale of the whole system which
cannot be described via reductionist analysis of properties and behaviours of
individual components.

This intuitively defined notion of the complex adaptive system encompasses a
broad array of natural and artificial systems and phenomena that can most generally
be described as "living" – including organisms, societies, brains, minds, intelligent
agents and their communities, languages, business organizations, nation states, eco-
systems and many more. They are best approached and studied via simulation mod-
elling techniques based on agent-based models, where many heterogeneous agents
form complex networks of interactions giving rise to the emergent properties of a

36 Chapter 2. A quest to understand

whole system (Di Paolo, Rohde, and De Jaegher, 2008; Heylighen, 2009a; Komosin-
ski and Adamatzky, 2009; Weiss, 1999). This avenue is followed throughout this
thesis and detailed in Chapters 3 and 4 for the purpose of conceiving, modelling,
studying, understanding and possibly implementing an (artificial) complex, living
and intelligent system.

(Anti)fragility

A new and highly conductive perspective to complex adaptive systems is proposed
by Taleb (2012). This perspective characterizes a system by its long- and short-term
response to external perturbations. A number of common notions used to describe
the vulnerability of a system or "thing" are explained in the following way using this
perspective:

• Fragile applies to a system that disintegrates or loses its properties immedi-
ately when the energy of perturbation exceeds certain threshold. Taleb (ibid.)
gives the example of a porcelain cup, which breaks easily from contact with
another object or falling to the ground – i.e. exposure to a small perturbation.
Yet an engineered system which can withstand most of the perturbations but
breaks due to unusually high energy is also fragile, albeit with much higher
fragility threshold. Fragility is therefore a dynamic property of the system
which describes not only the threshold at which it breaks, but, most impor-
tantly, the dynamic response to perturbations that are smaller than the thresh-
old. Depending on how large the threshold is, systems may be considered
vulnerable or resistant (Johnson and Gheorghe, 2013).

• Robust or resilient systems are the ones which do not change when exposed
to a perturbation of smaller energy than their fragility threshold.

• Antifragile systems and things respond to the perturbations of lower level
than the fragility threshold by re-arranging their internal organisation in a
manner that makes their fragility threshold higher than before perturbation. There-
fore antifragile systems are said to "positively thrive on uncertainty". Many
complex adaptive systems and all living systems are antifragile.

Apart from adding the ecological perspective to the complex adaptive systems
and their relation to the world (Veitas and Weinbaum, 2015), the concept of an-
tifragility and its measures have been mathematically defined and applied for risk
management and financial institutions’ stress testing designs (Taleb et al., 2012; Taleb
and Douady, 2013).

Network science

Network science is a relatively new discipline which gained weight and popular-
ity at the beginning of the 21st century, mostly due to its applicability for studying
systems with millions or billions of interacting components – societies, the internet,
molecular, metabolic networks and more (Barabasi, 2013). Despite the lack of a gen-
erally accepted definition of CAS and complexity science, many real world complex
systems can very well be represented as networks. Recall that complex systems con-
sist of many elements connected via dynamic relations. Likewise, a network (or a

2.2. Evolution of body, brain and mind 37

graph) is a collection of nodes and links between them, which can be directed or
undirected, weighted or unweighted, typed or untyped.

Network science and, more specifically, adaptive networks, allow the structure
and dynamics of those systems to be abstracted from their immediate domain and in
this way to be studied mathematically (Sayama et al., 2013). This fact alone provides
a powerful avenue and a unified metaphor for modelling, simulating and under-
standing complex adaptive systems. Surprisingly many, if not all, real world sys-
tems can be modelled as network maps – a collection of objects (nodes, vertices) and
relations between them (links, edges) (Rodriguez and Neubauer, 2010). Networks
can be said to be skeletons of complex systems, which, however, have to be dressed
with dynamic interactions in order to model these systems faithfully (Barabasi and
Frangos, 2002). Agent-based models and multi-agent networks, broadly used for
modelling and simulating complex systems, can actually be mapped with chosen
precision to graph structures, where agents are represented as nodes and their inter-
actions as links (Heckel, Kurz, and Chattoe-Brown, 2017; Ren and Cao, 2011).

While network science is a new discipline, the concept of the graph was intro-
duced as early as the late 18th century. The beginning of graph theory in mathe-
matics is considered to be even earlier and started with Leonhard Euler’s paper on
the Seven Bridges of Königsberg (1736). Graphs are one of the primary structures
in the study of discrete mathematics and have a number of mathematically proven
properties with well defined metrics. Yet the notion of the graph used in contem-
porary complex systems modelling and network science may considerably differ
from the notion commonly used in mathematics8. The reason is that real world
complex system networks, apart from being dynamic and adaptive, consist of many
heterogenous agents that interact in different ways or may have interactions of dif-
ferent types. For example, a social network may consist of friends and colleagues
who interact in the form of casual chats, beer evenings, or work assignments and
scientific discussions. Furthermore, the same two members of a social network can
engage in different types of interaction. These relationships are not grasped by the
simple graph structure commonly used in discrete mathematics.

Over the two centuries of graph theory history, many flavours of graph struc-
tures were invented in order to represent different properties and problem spaces
(see Rodriguez and Neubauer (2010) and Figure 2.7 for a wide, yet still incomplete
list of graph types). For our purposes it is enough to distinguish three types, repre-
senting extremes of the spectrum:

(1) Ordinary or simple graph is a tuple G = (V,E) where V is a set of homogeneous
nodes and E ⊆ V × V is a set of edges that connect a pair of nodes (Kivelä
et al., 2014). This structure is the most studied in graph theory and the great
majority of mathematical proofs are based on it. Despite being the most ac-
cessible for mathematical representation and reasoning, the simple graph is
limited in its expressiveness and less suitable for representing interesting real
world systems.

(2) Multilayer graph is an extension to the simple graph developed in order to
represent and model more complex and closer to real world systems. In a
most general form a multilayer network is a quadruplet M = (VM , EM , C, L),
where:

8Francis Heylighen (2016), private conversation.

38 Chapter 2. A quest to understand

(a) V is a set of non-homogeneous nodes;

(b) VM ⊆ V × L1 × ...× Ld is a set of layers in which v ∈ V is present;

(c) EM ⊆ VM × VM is the set of edges containing the pairs of possible combi-
nations of nodes and elementary layers;

(d) {La}da=1 is the set of elementary layers defined by d aspects.

The traditional metrics of simple graphs can be generalized to work with mul-
tilayer graphs, yet the generalization process is complex and involves advanced
mathematical tools, such as tensor algebra, generating functions and spectral
theory (Tomasini, 2015). Additionally, these graph structures are quite cum-
bersome and not very intuitive.

(3) Property graph can be seen as a further extension of multilayer network in that
it allows for an arbitrary number of edge and vertex labels (types) which can
therefore be heterogeneous in meaning. It also allows for an arbitrary number
of properties that can be attached to edges and vertices. Formally, a property
graph is defined as G = (V,E, λ, µ), where:

(a) V is a set of non-homogenous nodes;

(b) E ⊆ V × V is a set of directed edges;

(c) edges are labelled (i.e. λ : E → σ; where σ is a text label);

(d) properties (labels or types) are a map from elements (nodes and edges) to
keys and values (i.e. µ : (V E) × R → S; where (V E) are elements, R are
keys and S – values).

The property graph is the most expressive graph structure and by its use all
other graph types can be represented (see Figure 2.7b) 9 This is one of the rea-
sons for our use of property graphs in the computational model of open-ended
distributed computing (see Chapters 4 and 5).

Hierarchical structures of systems, discussed in Section 2.2.2, are formally trees,
which are special forms of graphs that do not contain cycles and where every ver-
tex has only one outgoing link. Finding a decomposition (i.e. hierarchical structure)
of a nearly decomposable system amounts to finding a spanning tree on a graph
of this system, which is a well defined computational operation (Ruohonen, 2013).
Recall from discussion on page 17 that most of the physical systems are nearly de-
composable. Complex systems on the other hand, are non-decomposable in a strict
sense, yet their decomposition can be found if one accepts the cost of incurring an
arbitrary amount of information loss. We will explore this avenue in detail in Chap-
ters 4 and 5. For now it is important to establish the natural applicability of graph
structures (concretely the property graph) for dealing with the decomposability of
complex systems and therefore finding hierarchical and heterarchical structures in
them which, as was proposed earlier (see page 25), is the major operation of intelli-
gence.

9Including a directed labelled hyper-graph which is a comparably expressive graph structure, where
links can connect more than two vertices. Nevertheless, it is in principle possible to represent any
hyper-graph structure using property graph formalism, yet not the other way round. A labelled di-
rected hyper-edge can be represented as a special vertex which is then connected to other vertices via
simple binary edges. In property graph, every such binary edge could have a different label, yet this is
not possible to represent in a hyper-graph. On the other hand, certain structures can be represented in
a more compact way using hyper-graph formalism.

2.2. Evolution of body, brain and mind 39

(A) Possible formalisms that can be combined in order
to obtain different types of graph structure.

(B) Expressiveness of major graph types with weighted
property graph as the most expressive formalism that
can be morphed to other graph types via selecting out

certain properties.

FIGURE 2.7: Description and comparison of different graph types.
Adapted from Rodriguez and Neubauer (2010)

Perceptual control theory

Perceptual control theory (PCT) is a theory of behaviour which was conceived in the
1950s by Powers, Clark, and McFarland (1960) and is still in active development. It
has been applied to diverse fields, including animal behaviour, neuroscience, soci-
ology, psychology, psychotherapy, robotics, human-machine interaction and more10.
PCT differs from other theories in its basic assumption about the nature of behaviour
itself and is sometimes considered the "third grand theory of behaviour" along the
stimulus-response model of behaviourism and information processing model of cog-
nitive psychology. Yet for a long time it was overshadowed by behaviourism and
cognitive psychology, to which it was opposed, and only started to re-emerge thanks
to the rise of self-regulation theory (Mansell and Marken, 2015).

The fundamental idea of PCT was known to Aristotle (and probably much ear-
lier) and well expressed by William James as: people act so as to bring conditions they
desire – to perceive their world as they wish it to be (Taylor, 1999). Yet this idea gained the
backing of technical knowledge and system theory only after the introduction of the
notion of cybernetics by Wiener (1950) and subsequent developments in the field of
engineered control systems. The core tenet of PCT is that all behaviour is control of per-
ception. Control in the strictly engineering sense is defined as bringing a perception
of some state to a desired (reference or goal) to which it is compared and maintaining
it there (Taylor, 1999). PCT derives quite a few fundamental principles that make it
stand out from control theory in engineering as well as other theories of behaviour.
We here briefly describe a few aspects which are most relevant to the present work
without trying to be exhaustive or complete in covering this 70-year-long research
programme (Powers, 2016).

The core of PCT is well described in terms of a ’closed-loop’ cybernetic system yet
contrasting it with the traditional models of cybernetic control. The first difference
lies in that while traditional models of system control assume that a system controls
its output, PCT assumes that a system controls its input – which literally follows from

10See e.g. http://www.pctresources.com/index.html

http://www.pctresources.com/index.html

40 Chapter 2. A quest to understand

its core tenet that behaviour is control of perception, and perception is obviously an
input.

FIGURE 2.8: A general form of a feedback control system (adapted
from (Powers, Clark, and McFarland, 1960, p. 76)). Blue lines in-
dicate usually perceived environmental boundaries that separate an
individual feedback loop from its environment – a relationship that is

often simplified in order to make things more ’understandable’.

At first glance, Figure 2.8 looks similar to the classical depiction of a control loop,
but there is a key difference. Internally (between blue lines in the figure), a feedback
loop consists of three functions: (1) a feedback function f = F (ve) which converts the
environmental variables ve to the feedback signal f to be further considered by the
system; (2) a comparator function e = C(f, r) which compares the feedback signal
f ("perception") with a reference value r ("desire") and produces an error signal e.
Usually the comparator function is considered a form of subtraction between f and
r, but this need not be the case in general; (3) an output function o = O(e) which
conceives some sort of external action by the system. Classically, a control loop tries
to correlate the output signal with the environmental variables in order to mini-
mize error. In PCT, the nature of correlation is modulated by the reference signal r.
Furthermore, PCT greatly relaxes the "freedom" of a control loop to minimize e by
enabling the adjustment of all three functions – i.e. being able to perceive, compare
and correct via environmental loop variables that maximize its perceptual control.
In this sense, the seeming "adaptation" of negative feedback systems to environmen-
tal signals is only a side effect of being persistent in this environment – the goal of
such correlation is not in any way directly represented in a system. I believe that
this insight carries great importance when considering living cognitive rather than
engineered systems.

The second crucial difference is that in the PCT control model the goal specifica-
tion of the system can be said to be set in and by the system, while in the traditional
model it is set exogenously (Mansell and Marken, 2015). Formally, goal specification
is the reference value of a chosen control variable – so, for example, if a system is
a thermostat, its goal specification is the difference between perceived temperature
and desired temperature levels. When the goal is specified exogenously, a system
can only aim at its perceptual goal by somehow changing the variable itself (actual
temperature in case of thermostat). When the goal is specified endogenously, a sys-
tem can aim for the same perceptual goal also by changing the perception or desired
level of a variable without trying to control the variable itself.

The above may seem to make little sense in the context of control systems which
are engineered specifically with the purpose of controlling an exogenously set vari-
able (as it is in the case of thermostat – probably nobody wants a device that decides
by itself how to perceive and react to the temperature in a room). Yet in the context

2.2. Evolution of body, brain and mind 41

FIGURE 2.9: A functional comparison between a thermostat and a
person, showing the difference between them in terms of the source
of the desires that animate them. Adapted from Powers (2016, p. 284).

of an autopoietic and self-regulating system with the purpose of regulating a precar-
ious balance between order and chaos in its own behaviour, it does not really matter
how it is done as long as this balance is kept and the system manages to persist
in a given environment. In this sense, PCT operationalizes into a falsifiable theory
the principle that the driving force behind living cognitive systems’ behaviour is to
perceive the world the way they wish it to be.

The third difference in PCT from traditional theories of cybernetic control is
the emphasis on interactions between multiple levels of negative feedback units
("closed-loops" of Figure 2.8) – leading to understanding that (1) these loops can still
be "open" to influences from higher levels and (2) that the process driving their "in-
dividual" closure is a dynamic property of the whole system – consisting of multiple
hierarchical levels of feedback control subsystems (see Figure 2.10).

Multiple levels of feedback control loops in PCT are almost equivalent to the con-
cept of nested hierarchical levels of test-operate-test-exit loops of Miller, Galanter,
and Pribram (1960), described on page 20. Yet PCT goes further than stacking feed-
back control units on top of each other and connecting their inputs and outputs. It
attempts to describe complex relationships between orders, which are "responsible"
for the individual formations of "closed-loops".

This is done by introducing an additional recording function R to each individual
feedback subsystem, resulting in the functional description represented in Figure
2.11. In human terms, the recording function is responsible for memory and imagi-
nation, which are fundamental for the completion of the PCT model. The recording
function can be approximated to something like fr = R(f, r) (using the terms intro-
duced above), where f is a regular (current) feedback signal, fr – a recorded feedback
signal and r is a reference value. The recording function has the property of return-
ing the memory of a signal experienced by the system in the past when triggered
by circumstances considered external to the local system. The bottom line is that
this extension (1) allows the system to have some degree of non-trivial "choice" be-
tween the current f or recorded fr feedback signal as an input to the comparator.
Also, (2) it relates levels of feedback control units by positing that reference values –
signals r from higher order systems – no longer serve directly, but only through stim-
ulating memory-trace in recording function. The comparator function is indifferent
as to whether it receives an "imagined" memory or the currently perceived feedback
signal. This property allows the system, in human terms, to "dream", "hallucinate",

42 Chapter 2. A quest to understand

FIGURE 2.10: Interconnections in a control system hierarchy.
Adapted from McClelland (1994, p. 470).

"fantasize" and to "plan" actions mentally. This kind of "choice" is closely related to
what was earlier presented in more abstract terms as the selection for relevance aspect
of model building (see page 25).

Remarkably, the epistemology of PCT, as well as the theory of autopoiesis, is
constructivist: an organism’s knowledge should not be seen as an objective reflec-
tion of outside reality, but as a subjective construction, intended to help find a way
to reconcile the system’s overall goal of maintaining its organization with the dif-
ferent outside perturbations that may endanger that goal (Heylighen, 2002a). The
hierarchically organized system of multiple orders of feedback control sub-systems
(called the negentropy system or N-system in PCT) is capable of learning via coming
up with stable organizations of relations between orders. In terms of evolution-
ary theory, the learning process can be understood as a mechanism of internalizing
vicarious selectors into a system (see Section 2.2.1). Yet such a system has a fluid
structure which becomes a stable feedback system "not because there is anything
that ’tells’ the system to stop reorganizing, but because the lower-order systems and
the environment are such that this particular organization produces behavior which
results in a lessening of the intrinsic error, thus slowing or halting the reorganization
process" (Powers, Clark, and McFarland, 1960, p. 82).

Furthermore, PCT defines a system as a set of functions interrelated in a special

2.2. Evolution of body, brain and mind 43

FIGURE 2.11: Relations among orders / strata of the system. Adapted
from Powers, Clark, and McFarland (1960, p. 83).

way. An environment of a system can then be defined as all those functions and
variables not included in a set chosen to define a system (Mansell and Marken, 2015).
A system interacts with an environment via its boundary, defined as input boundary
(i.e. all "inward" functions which relate environmental variables to system variables)
and output boundary (i.e. all "outward" functions which relate system variables to
environmental variables). Note that this definition depends on the choice of the
boundary, which is at least partially observer dependent.

Last but not least, perceptual control theory considers the collective control of
individual feedback subsystems to be the main mode of operation, as can be seen
from Figures 2.11 and 2.10. A higher order subsystem receives environmental sig-
nals ve from more than one lower order subsystem and a lower order subsystem
receives reference signals r from more than one higher order subsystem. One can
further imagine lateral relations between subsystems of the same order in the spirit
of the hierarchical temporal memory / cortical learning algorithm of Hawkins and
Blakeslee (2005). Thus defined, collective control further emphasizes and allows one
to appreciate the fuzzy nature of system-environment boundaries, and, moreover,
the boundaries among hierarchical levels within a system (conceptualized as scales
of individuation in the Section 3.3.2). The PCT model of collective control has inspired
a body of research and validation attempts in the area of social systems (Busseniers,
2018; McClelland, 2006).

Stigmergy

The concept of stigmergy was originally introduced in order to account for the com-
plex coordination observable in biological insect societies (Grassé, 1959), but has
since been generalized into a universal mechanism of decentralized coordination
in societies of interacting individuals (Heylighen, 2015b, 2016) and even a proba-
ble counterpart of the natural selection process (Vidal and Dick, 2014) in evolution.
As defined by Heylighen (2016), “stigmergy is an indirect, mediated mechanism of
coordination between actions, in which the trace of an action left on a medium stim-
ulates the performance of a subsequent action”.

More concretely, stigmergy is a form of indirect coordination between indepen-
dent actors via a shared medium, where some actors leave a trace that is picked up
and acted upon by other actors and in such manner guides their performance. It is
probably the simplest yet most effective form of coordination of complex systems
– so effective that it gives rise to the phenomenon of collective intelligence famously

44 Chapter 2. A quest to understand

observed in large colonies of eusocial insects, where a group is observably more in-
telligent than any single individual in it. A key requirement for the stigmergy to
occur is the presence of the shared medium – a regulatory structure external to the
agents that promotes coordination (Heylighen, 2011, p. 33), where signals can be
independently written and read by the participants of the system.

The concept of stigmergy has been applied for understanding coordination in
colonies of simple organisms, molecular interactions, biological and robotic swarms,
cognition and many more domains. Furthermore, stigmergy attracted the attention
of computer scientists when it was noticed that, by using it, eusocial insects col-
lectively and without prior knowledge actually solve complex computational prob-
lems, such as the travelling salesman problem, which is an NP-hard combinatorial
optimization problem (Stützle and Dorigo, 1999). This phenomenon has been called
by computer scientists stigmergic optimization and stigmergic computation and is ex-
tensively researched (Abraham, Vitorino, and Grosnan, 2006; Pintea, 2014) from the
computational point of view. This perspective is most interesting in the context of
this work as it is instrumental for the computational framework of open-ended in-
telligence developed in Chapters 4 and 5. For the conceptual treatment of stigmergy
as well as its applications in other domains see Gloag, Turnbull, and Whitchurch
(2015), Heylighen (2015b, 2016), Marsh and Onof (2008), and Weinbaum (2018).

On the most abstract level, computation is the process of manipulating data. Tra-
ditionally computation has been associated with the concept of the Turing machine
(Turing, 1937) which describes it in terms of two abstract components: process and
memory. According to Turing’s model, a process reads data from a certain place in
the memory, manipulates it according to provided instructions and writes it to a cer-
tain place in the memory. By combining different instructions and carefully ordering
places (addresses) of the memory where the data is read/written, any kind of data
manipulation, no matter how simple or complicated, can be achieved. Stigmergic
computation can also be described along these lines – it is composed of more than
one (typically a great number of) individual instructions/processes ("ants") which
read and write to a shared memory ("environment"). The most important differ-
ence between these two models is that in the case of stigmergy, instructions are not
strictly ordered and places / addresses in memory are not strictly defined – they
"self-organize" during the computational process itself.

It seems perfectly appropriate to attempt to explain the emergence of collective
control within the hierarchy of elementary feedback units of perceptual control the-
ory (see page 39) in terms of stigmergic computation and, first and foremost, the
emergence of hierarchy (see Section 2.2.3) – which, after all, is just a pattern of con-
nectivity. The concept of stigmergic computing will be developed further in Section
4.5.

Note, however, that shared memory as an external logical or physical entity is
not needed for stigmergic computation to occur. The function of shared memory
is the ability to pass information indirectly (and perhaps probabilistically) to "un-
known" receivers – whoever is passing by and is willing to pick up the information
left in the medium. This kind of communication is usually contrasted with direct
communication, where each process sends the information to one or a few known
recipients. Yet the same effect can be achieved by broadcasting information to any
recipient which is capable of receiving it, for example via the mechanism of spreading
activation (see Section 2.3.1).

2.3. Insights from cognitive and neuro science 45

2.2.5 Guided self-organization

Guided self-organization is the multidisciplinary area of inquiry aimed at finding
ways to guide the processes that seemingly spontaneously self-organise towards desirable
outcomes. In simple terms, it is a field of ongoing research into engineering the
evolutionary development process resulting in defined complex adaptive systems
(in a functional or structural manner). It is considered among the most complex
engineering tasks (Prokopenko, 2009, 2014). The research within the domain of
guided self-organization draws on methods from computational, physical, biolog-
ical domains, information theory, theory of computation, dynamical systems, ma-
chine learning, evolutionary biology, artificial life, statistical mechanics, thermody-
namics, and graph theory – and therefore touches many aspects of the open-ended
decentralized computing concept developed by this work. We build on these paral-
lels along the way.

Based on what we covered so far, we can formulate the following principles,
which will guide the design of the computational model in Chapters 4 and 5:

• The emergence of collective control is equivalent to the stabilization of com-
munication patterns among independent elementary units;

• Together these patterns define a structure which gives rise to a function of the
overall system and constrains emergence of further structures and functions;

• By that, the progressive determination of structure and function is achieved in
an evolutionary developmental way.

• Such systems cannot be directly controlled, but guided via exerting influence
on a progressive determination process, which is a complex engineering task
and the research domain.

2.3 Insights from cognitive and neuro science

2.3.1 Spreading activation

Spreading activation is the mechanism of information propagation in a network, e.g.
cascades of neural action potentials in a biological brain. The term was introduced
in the 1960s by Ross Quillian in the context of human semantic processing and com-
puter simulations of memory search and comprehension of language (M. Collins
and Loftus, 1975). Since then it has become the main algorithm for working with
network data structures: associative, biological, artificial neural networks as well as
semantic networks and graphs (Baronchelli et al., 2013; Gouws, Rooyen, and Engel-
brecht, 2010; Heylighen, 2008; Heylighen, 2001a, 2002a; Heylighen and Bollen, 1996;
Rodríguez, Gayo, and Pablos, 2013).

In simple terms, the mechanism works by activating one or more nodes in a net-
work and then propagating this activation to neighbouring nodes via associative or
semantic links. The quantity of activation (or action potential in biological neural
networks) is modulated by the strength of links between nodes or semantic parame-
ters in case of semantic networks (Heylighen, 2009b; Rodriguez, 2011). When a node
gets activation from several links, the activations are summed and the sum is prop-
agated further. In this way a mechanism can learn the structure of a network, or a

46 Chapter 2. A quest to understand

particular aspect of it. Dynamic networks can also be modelled using this algorithm
by allowing activations to change link strengths (in biological neural networks) or
semantic properties of nodes and links (in semantic networks and graphs). Impor-
tantly, the algorithm naturally allows for parallel and distributed processing.

2.3.2 Ecological rationality

Ecological rationality is a concept introduced by Gigerenzer (2008) which frames ra-
tionality as a match between mind and environment rather than an ideal human
reasoning and probabilistic inference. The concept reflects and builds on the view
that "intelligent behaviour in the world comes about by exploiting reliable struc-
ture in the world – and hence, some of intelligence is in the world itself" (Todd and
Gigerenzer, 2012). Simon (1990) framed a similar principle in terms of the image of
scissors, saying that the rational behaviour of all physical symbol systems is shaped
by a pair of scissors whose two blades are the structure of task environments and
the computational capabilities of the system – and both have to be taken into ac-
count when envisioning an embodied intelligent being. The perspective of evolu-
tionary epistemology (Section 2.2.1) is even more radical, basically claiming that all
knowledge is nothing else than internalization of the "intelligence of the world".

Cognitive psychology therefore can be approached as the study of computational
capabilities of a certain embodiment of intelligence facing diverse tasks. These ca-
pabilities may involve logical reasoning, statistical sampling, probabilistic inference
and heuristics whereas none of these modes fit the ecological purpose automatically
– i.e. they should be dynamically selected depending on the context. Ecological ra-
tionality emphasizes the intractable structure of the world and importance of heuris-
tics for interacting with it. Heuristics deal with uncertainty and limits of computa-
tional capacity by "smartly" ignoring part of the information about the environment
(see the principle of selection for relevance on page 25). It does not try to achieve op-
timal results, as do optimization procedures or algorithms, but rather satisfy – i.e.
achieve "good enough" results.

By emphasizing relations with an environment, ecological rationality blurs the
borderline between perception and cognition. Importantly, it allows cognition to
be viewed in terms of non-deterministic and context-dependent computational pro-
cesses (see Section 4.2.3). Furthermore, it blurs the boundary between "system" and
its "environment" by positing that the intelligence and cognitive capabilities of an
agent cannot be analysed or understood without reference to its environment. A
philosophical system that addresses these issues in a rigorous way and thus pro-
vides a strong conceptual background is the theory of individuation discussed in
Section 3.2.

2.3.3 Rate distortion theory

A framework that proposes practically applicable formalization and definition of
important aspects of ecological rationality in mathematical terms is the rate distor-
tion theory (Berger, 1971) – a major branch of information theory that provides the-
oretical foundations for lossy data compression. The relevance and value of the

2.3. Insights from cognitive and neuro science 47

rate-distortion theory is that, as Sims (2016, p. 13) formulates, it “combines the cen-
tral elements of both information theory and decision theory, and is uniquely situ-
ated for explaining biological computation as a principled, but capacity-limited sys-
tem”. It provides an excellent framework for discussing the fundamental trade-off
between comprehensibility and information loss (discussed on page 27). Moreover,
rate distortion theory supports the conceptual approach to the general process of
understanding as a lossy information compression (see page 28) – an approach that I
consider one of the major principles for conceiving a synthetic cognitive system.

Perception is a process of extracting meaning from the noisy and uncertain en-
vironmental signals (i.e. sensory space) and choosing which ones to transmit to a
decision-making process and which ones to discard. Rate-distortion theory looks to
perception as a communication channel of limited capacity which necessarily im-
plies loss of information in cases where the input rate is larger than channel capacity
(which is always the case with the natural environment). Therefore, the goal of
perception cannot be the perfect transmission, storage, or reproduction of afferent
signals, but rather the minimization of some cost function subject to constraints on
available capacity. The rate-distortion theory describes and formalizes this trade-off
by quantifying how the minimum necessary channel capacity depends on perfor-
mance requirements in terms of information transmission (ibid.).

The rate-distortion curve (Figure 2.12a) defines the ideal boundary performance
of a perception–memory system (as an information transmission channel or informa-
tion compression system) in terms of its structural efficiency given the goal (i.e. cost
function) of the system. The ideal boundary performance is the theoretically maxi-
mal information transmission rate given the probability of error in the transmission
channel (i.e. distortion). Considering the ecological nature of intelligence, it may
be more important for the decisions of the perceptual–cognitive system to be "good
enough" in a specific situation than "efficient" or "optimal". The crucial distinction is
that the "good enough" decision is subject not only to the internal neural architecture
of the embodiment in question, and the costs and constraints it imposes, but also to
the goals of the agent it represents and the environmental situation at the moment
of the decision. Rate-distortion theory represents the perceptual goal of a system in
terms of a cost function which formalizes the outcome of the selection for relevance
aspect of modelling – depending on the chosen cost function, the ideal boundary
performance defined by rate-distortion theory may differ (see Figure 2.12b).

When applied to human cognition, rate–distortion theory describes three critical
components that limit human perceptual memory: (1) information-theoretic limits
on memory capacity, (2) mismatches between ecological statistics and implicit statis-
tical learning, and (3) mismatches between task-defined and implicit cost functions.
Importantly, it explicitly considers the effect of a system’s goal on the measure of its
performance – allowing for thinking in terms of multiple goals without presuppos-
ing a single overarching "objective" one. The aspect that the theory does not encom-
pass, however, is the mechanism of choosing a concrete goal in a concrete situation
– i.e. selection for relevance aspect of modelling.

48 Chapter 2. A quest to understand

(A) Indicates the optimal trade-off between proba-
bility of error (distortion) and rate of information
transmission for a given cost function L1; any real
channel can operate only above the optimal curve
in the shaded area of the plot. The distance of an
actual system from the optimal curve measures the

structural efficiency of the channel.

(B) Indicates two different cost functions L1 and L2;
in a complete open-ended model, the cost function
represents the goal of the perceptual-memory sys-
tem and is a parameter which can vary depending

on the environmental situation.

FIGURE 2.12: Rate-distortion curve. Adapted from Sims (2016).

2.3.4 Coherence

As defined by Thagard (2002, p. 34), coherence can be understood in terms of maxi-
mal satisfaction of multiple constraints in a system or theory. A system is comprised
from a set of elements or representations, such as concepts, propositions, perceptions,
images, goals, actions, etc. Elements are related to each other with the relations of co-
herence; if two elements cohere (i.e. explain, deduce, facilitate, associate, etc. with
each other), then there is a positive constraint between them; if elements incohere
(i.e. are inconsistent, incompatible or negatively associated), then there is a negative
constraint between them. The degree of coherence is obtained by dividing a set of el-
ements and constraints into accepted and rejected subsets. A positive constraint can
be satisfied either by accepting both elements or rejecting both elements. A negative
constraint can be satisfied only by accepting one element and rejecting the other.

Two notes are of relevance here. First, the coherence problem has clear relations
to the maximum satisfiability problem (MAX-SAT) in computer science and could
be considered a computational problem, albeit requiring a proper representation.
Second, the coherence problem naturally lends itself to being represented in a graph
form (i.e. in terms of elements and their relations) – an important property which
we will expand on later (see Section 5.2 Graph computing on page 126).

While the coherence problem as defined by Thagard allows for a fuzzy or con-
tinuous degree of coherence (e.g. calculated as the proportion of satisfied constraints
with respect to all constraints in the system), it allows only for discrete constraints.
Yet much more realistic would be a system with fuzzy constraints ranging from
fully positive to fully negative. It may be that the difference of using discrete or
fuzzy constraints in solving coherence problems is precisely the difference between
symbolic and sub-symbolic processing and computing. The insurmountable gap be-
tween symbolic and sub-symbolic cognition stems from the fact that all perception
is sub-symbolic, but in order to apply reasoning to it, the fuzzy sub-symbolic rela-
tions have to be converted into discrete and unambiguous ones. During this process,
some information about the system is necessarily lost.

2.3. Insights from cognitive and neuro science 49

2.3.5 Integrated information

Integrated information is the central concept of the mathematical theory of con-
sciousness introduced by the neuroscientist Tononi (2004). The thesis of integrated
information theory (IIT) is that the degree of consciousness of a system is correlated
to the measure of integrated information Φ. Intuitively, Φ measures how much infor-
mation is generated in the system by the virtue of being an irreducible whole rather
than a collection of independent components. The basic idea is to estimate how
much information is generated by the components when considered independently
and compare it to the amount of information generated by the system as a whole
(Tononi, 2008). This can be understood as a measure of "non-decomposability" or
"irreducibility" of a system to its parts. Note from this definition that information in-
tegration is actually a measure of complexity of a complex adaptive system composed
of interacting heterogeneous components.

Conceptually, IIT aligns well with the concept of open-ended intelligence and
individuation of intelligence (Weinbaum, 2018; Weinbaum and Veitas, 2017a; Wein-
baum and Veitas, 2017b) in that the information integration measure can be used to
account for the "degree of individuation" of the system (the concept will be explained
later on page 60 in terms of distinction between preindividual, fluid individual and
fixed individual). Concretely, IIT uses the notion of intrinsic information, which is de-
fined as "a difference that makes a difference" from the perspective of the system
itself, i.e. without relying on an external observer. In that it differs from Shannon’s
notion of extrinsic information (Oizumi, Albantakis, and Tononi, 2014) and, further-
more, allows for information to individuate during the development of a system,
which is a fundamental aspect of the developmental systems theory (see page 33).

2.3.6 Human cognitive development

The concept of cognitive development has been defined in the field of psychology as
“the emergence of the ability to understand the world” (Schacter, Gilbert, and Weg-
ner, 2010, p. 447). Traditionally it is mostly associated with the child development
stages proposed by Jean Piaget but can be also applied to describe sense-making
by an individual throughout its whole lifetime as proposed by Kegan (1982). Piaget
originally contended that children pass through four eras of development - sensimo-
tor, prelogical, concrete operational, and formal operational - which can be further
subdivided into stages and substages (Kohlberg and Gilligan, 1971; Piaget, 2004).
Kegan also propounded that Piaget’s and some later cognitive development theo-
ries generally describe recursive subject and object relationships when the subject of
a previous stage becomes an object in the next stage, to which he refers as an "evo-
lution of meaning". Subject in this context means whatever is perceived as part of
self while object is part of the environment. Therefore cognitive development can be
understood as an ongoing balancing of subject – object relations and interactions across the
emerging boundary of an individual towards increasing cognitive complexity (Weinbaum
and Veitas, 2017a). This recursive process progressively defines a boundary of an in-
dividual – a psychic differentiation of self from the other (Kegan, 1982, p. 24) which
constitutes the differentiation between agent and environment.

For further clarification of our understanding of cognitive development as indi-
viduation and the benefits of such an approach, let us examine a schema of Era I of
early cognitive development as formulated by Piaget (Table 2.1). It is clear that every

50 Chapter 2. A quest to understand

Stage 1. Reflex action.
Stage 2. Coordination of reflexes and sensorimotor repetition (primary circular

reaction).
Stage 3. Activities to make interesting events in the environment reappear (sec-

ondary circular reaction).
Stage 4. Means/ ends behavior and search for absent objects.
Stage 5. Experimental search for new means (tertiary circular reaction).
Stage 6. Use of imagery in insightful invention of new means and in recall of

absent objects and events.

TABLE 2.1: Era I (age 0-2): The era of sensorimotor intelligence.
Adapted from Kohlberg and Gilligan (1971, p. 1063)

subsequent stage builds upon the previous one and together they seem to form a hi-
erarchy. It seems, however, that cognitive development theorists and practitioners,
including Piaget, agree that stages in cognitive development overlap, occur in par-
allel or get manifested later in the maturation process. Therefore we can approach
the process of cognitive development as both a sequence of stages and a continuum.
In Chapter 3 we will see that a developmental continuum punctuated by distinct
stages is also supported by understanding cognitive development as a case of indi-
viduation. The appearance of stages of cognitive development seems to be better
understood in terms of dynamic products of individuation or "evolutionary truces",
as Kegan calls them, rather than pre-defined "milestones".

2.3.7 Enaction

The enactive approach treats cognition as the adaptive process of interaction be-
tween an agent and its environment. Actually, the distinction between agent and
environment is constituted by the interactions themselves. A cognitive system can
be seen as a complex adaptive system which is an organized network of interactive
sub-processes (De Jaegher and Di Paolo, 2007, p. 3) that together realize a network
of objects and their relations as they are perceived in the world.

A cognitive system cannot form itself separately from the matrix of interactions
with other entities within a larger population. In terms of social psychology this
principle is informed by a perspective that minds exist only as social products (Sum-
mers, 1994, p. 328). Relationships and bonds with other entities of the population
are part of the cognitive system and thus define its identity on equal terms with
internal relationships and structures. Therefore, the mental states of an individual
are not established prior to the interaction, but are shaped, or even created, during
its dynamics. Di Paolo and De Jaegher (2012) describe these dynamics as participa-
tory sense-making and propose the interactive brain hypothesis which "describes an
extreme possibility, namely that all social brain mechanisms depend on interactive
elements either developmentally or in the present, even in situations where there is
no interaction" (ibid., p. 5).

Also, in some forms of psychotherapeutic theory and practice (e.g. Gestalt and
the interpersonal approach to psychoanalysis), certain interactions or situations which
are normally considered external to an individual are actually an integral part of its
sense-making processes. An individual enacts itself in its social milieu rather than
merely using internal representations, plans or theories of mind or even perceptual
routines existing prior to the interaction.

2.3. Insights from cognitive and neuro science 51

Edelman and Mountcastle (1982) define "world inputs" and "self-inputs" to dif-
ferentiate between interactions across and within the boundary of a neuronal group.
Weinbaum and Veitas (2017a) extend this principle from the context of neuronal
groups to networks of cognitive agents. An individual is defined as a totality of both
types of interactions while the proportions of them may differ at different periods
(see Section 3.3.3). Likewise, Brender (2013) relates cognition to bodily movement
in an environment: "we cannot conceive of a difference in nature except by refer-
ence (implicit or explicit) to a bodily movement that would reveal this difference.
[...] Thus we cannot give an account of nature that is not an embodied account, that
does not take up the point of view of a moving body situated within the nature it
describes".

2.3.8 Sense-making

Sense-making is one of the components of the enactive approach to mind and cogni-
tion (De Jaegher and Di Paolo, 2007). Weinbaum and Veitas (2017a) frame cognition
as a process of individuation within the scope of what is referred to by Piaget (2004)
as "genetic epistemology". A psychologically-oriented definition of sense-making is
the following: sensemaking is a motivated, continuous effort to understand connections
(which can be among people, places, and events) in order to anticipate their trajectories and
act effectively in relation to them (Klein, Moon, and Hoffman, 2006, p. 3). From the per-
spective of dynamics of the cognitive system, sense-making is a continuous effort to
form a network of connections and objects as they are perceived in the world. The
enactive approach implies that cognition and sense-making are seen not as some-
thing that happens inside clearly defined boundaries of the cognitive system but
as the product of interactions (McGann, 2008) across emerging boundaries: “sense-
making establishes a perspective on the world with its own normativity, which is
a counterpart of the agent being a center of activity in the world” (De Jaegher and
Di Paolo, 2007, p. 4). Or, as Brender (2013) puts it, "the organism and its world grow
together dialectically, each driving the other to become more articulated and deter-
minate through its own increasing determinacy. This is the growth of sense: the
self-articulating field of differences that make a difference to the organism" (ibid., p.
271).

Sense-making has the following notable aspects:

• Identity and identification. A prior notion of an entity ‘which makes sense’
seems to be needed, but in the framework of open-ended intelligence it is not
the case: the identity of cognitive agents is created during the process.

• Enaction. According to Clark (2012) perception is an action where an agent
produces a stream of expectations and then corrects its own model according
to incoming information. Therefore the primary component of sense-making
is an action: an agent acts upon the environment, catches the "reflection" or
response and updates the internal representation of it.

• Reflexive. Sense-making is a two-way interaction between the individual and
its environment across the boundary being created during the same process:
any agent’s examination, modeling and action "bends" the environment and
affects the perception of and further decisions by that same agent. The prop-
erty of reflexivity of the system captures these mutual influences of networks
of processes across the boundary of an agent.

52 Chapter 2. A quest to understand

• Participatory aspect. As noted by Di Paolo and De Jaegher (2012), “mental
states that ‘do’ the understanding and the ones to be understood are not fully
independent or established, but are instead affected, negotiated, and even cre-
ated as a result of interaction dynamics” (ibid., p. 4). They describe the set of
possibilities arising from these dynamics with the notion of participatory sense-
making, emphasizing its social aspect. In Section 3.3.2 we extend the social
aspect of sense-making across multiple scales with the general framework of
individuation of interacting population of elements.

2.3.9 A worldview

The essence of the sense-making process is already encoded in the word itself – it is
an active "making" of a "sense" or "meaning" by an observer – a cognitive agent. The
concept does not overlook the fact that sense-making is based on extracting informa-
tion about observable patterns in the system (the world, self and others) being per-
ceived. But, at the same time, it emphasizes that it is the observer who decides what
the significant patterns are to extract from the data about a system or phenomenon.
Sense-making is rooted in the enactive approach to cognition (Section 2.3.7) which
puts the concept in a larger context, first of all, entailing the individuation of the
very agent which performs sense-making11,12.

The process of sense-making begets a worldview. Importantly, the relationship of
the sense-making and a worldview is a reflexive one – the worldview of an observer
determines significances which then influence the sense-making process of the same
observer. The concept of a worldview is a rich and multi-dimensional one (see Vi-
dal (2008) and Vidal and Dick (2014) for an in-depth discussion and references). It
can be understood as a Gestalt perception – a unique and integrated cognitive structure
– held individually or collectively in relation to self, others, society, and the cosmos at large
(Markley and Harman, 1981; Veitas and Weinbaum, 2015). With respect to the social
system we live in, each worldview includes our aspirations, the views on "natu-
ral tendencies" and "trends" of the system, related possibilities for the future, and
approaches to the appropriate modes of social governance. Each of these aspects is
based on a combination of sense-making perspectives which may be overlapping, in-
compatible or even mutually exclusive. For example, individuals or collectives may
prefer exploration, growth and development of persons, society and life in general,
or, alternatively, stability, safety and preservation. Often such preferences cannot
be accommodated within a single value system and represent different perspectives
towards the same phenomena. The society of mind is therefore the multiplicity of
interacting embodiments of worldviews, representing different value systems and
points of view. No single value system or worldview can be considered dominant or
"objectively" better, while the resilience and growth of the global system depends on
the mode of interaction among many worldviews rather than any isolated properties
of one of them.

11We employ the simplification of a well defined observer - observed distinction (i.e. agent - envi-
ronment) at this point mostly for didactic purposes. Actually, the distinction between observer and
observed itself individuates during the process of synthetic cognitive development (see Section 3.3.3
on page 74). For the in-depth analysis of the individuation of agent-environment boundary, please
refer to Section 2 of Weinbaum and Veitas (2017b).

12For an in-depth definition of sense-making concept, please refer to Section 1.3 of Weinbaum and
Veitas (2017a).

http://arxiv.org/pdf/1505.06366.pdf#section.2
http://arxiv.org/pdf/1411.0159v2.pdf#subsection.1.3

2.4. Summary of the chapter 53

2.4 Summary of the chapter

This chapter is a condensed view of the modern quest to understand intelligence
with a perspective informed by the philosophy of individuation and open-ended
intelligence – the subject that will be comprehensively discussed in Chapter 3. The
purpose of such a layout is, first of all, to show how established theories and modes
of thinking within broadly multidisciplinary domains raise issues from their own
perspectives which we are going to address with the metaphysical framework of
open-ended intelligence on a highly integrated and abstract level. It invites the
reader to appreciate the further introduced philosophical framework as a fertile con-
ceptual lens allowing these issues to be seen in a perspective which permits new
ways of theoretical understanding as well as the pragmatic research and develop-
ment of intelligent systems.

First, we introduced AI research perspectives, or currents, and position them on
the axis of freedom and constraint according to how much change they allow for an
intelligent system (or any human-designed complex adaptive system). Second, we
went on to introduce the evolutionary perspective to the process of becoming intel-
ligent in terms of biological and epistemological evolution, interactive co-emergence
of structural and functional hierarchies in complex systems, and information-theoretical
interpretations. Third, we discussed frameworks and insights from cognitive sci-
ence, neuroscience and other interdisciplinary domains. Altogether, this chapter
presents main concepts, techniques and currents of theoretical and practical thought
that will allow us to consolidate the model of open-ended decentralized computing
in Chapters 4 and 5.

Concretely, in this chapter we have formulated a list of principles and broad
requirements for the cognitive architecture:

i. Such architecture should allow for the emergence of identities of higher or-
der cognitive agents from the interaction of lower level heterogeneous compo-
nents.

ii. It has to account for at least partial ability of the emergent cognitive agents to
perform the selection for relevance operation of modelling the sensory input
of their environment.

iii. An evolutionary process implies the appearance of order (i.e. asymmetry) out
of disorder (i.e. symmetry) in terms of emergence of functional and structural
hierarchies as control structures.

iv. A cognitive system, as a complex adaptive system, balances between disorder
and order, which are equivalent to internal symmetry and asymmetry.

v. Complex adaptive systems are such because they do not have a single or sta-
ble control structure, but collective control structures (e.g. heterarchies). The
emergence of such collective control is equivalent to the stabilization of com-
munication patterns among independent elementary units which make up the
system.

vi. Stable or at least partially persistent patterns define a structure which gives
rise to a function of the overall system and mediates emergence of further
structures and functions. By that, progressive determination of structure and
function is achieved in an evolutionary developmental way which underlies
the self-modifying nature of a cognitive architecture.

54 Chapter 2. A quest to understand

The next chapter introduces and discusses the open-ended intelligence frame-
work and the philosophy of individuation which binds the still somewhat isolated
principles and requirements for the computational model into an integrated theory.

55

Chapter 3

Open-ended intelligence

The chapter is based on the following published papers:

Weinbaum (Weaver), D., Veitas, V. (2017). Open ended intelligence: the individuation of
intelligent agents. Journal of Experimental Theoretical Artificial Intelligence, 29(2), 371–396.
https://doi.org/10.1080/0952813X.2016.1185748

Weinbaum (Weaver), D., Veitas, V. (2017). Synthetic cognitive development: where intelli-
gence comes from. The European Physical Journal Special Topics, 226(2), 243–268.
https://doi.org/10.1140/epjst/e2016-60088-2

Veitas, V., Weinbaum, D. (2017). Living Cognitive Society: A “digital” World of Views.
Technological Forecasting and Social Change, 114, 16–26.
https://doi.org/10.1016/j.techfore.2016.05.002

3.1 Introduction

In Section 2.1 we identified the major AI research perspectives and types of intelli-
gence they explicitly or implicitly assume, and positioned them on the axis of free-
dom and constraint. Recall that the freedom and constraint continuum ranks concepts
of intelligence according to how much variety and change they allow. Intelligence
manifested as a deterministic computer algorithm (or a rule-based reasoning engine)
occupy the rightmost part of the continuum, allowing no possibility for the algo-
rithm to "decide" its course of action – since all its goals and behaviours are encoded
into rules that are pre-defined before the algorithm starts running. Open-ended in-
telligence, occupying the leftmost part of the spectrum, allows for any conceivable
behaviours, choices of goals and forms of embodiment powering these choices. The
most interesting manifestations of intelligence are arguably positioned in between
these two extremes, embodying a unique synthesis of both freedom and constraint
able to comprehend, operate and persist in specific environments. The synthesis of
freedom as an unconstrained possibility space and constraint as a single actuated
possibility is a process that allows and guides the evolutionary development of an
individual. The goal of this chapter is therefore twofold:

• First, introduce the philosophical framework which allows and promotes look-
ing at all manifestations of intelligence as snapshots (or projections) of the fluid

https://arxiv.org/abs/1505.06366
https://arxiv.org/abs/1505.06366
https://arxiv.org/abs/1411.0159
https://arxiv.org/abs/1411.0159
https://arxiv.org/abs/1411.0159

56 Chapter 3. Open-ended intelligence

process that open-ended intelligence is. A complete account of open-ended in-
telligence as a metaphysical framework is developed by Weinbaum (2018).

• Second, emphasize, describe and operationalize the abstract mechanism of
open-ended intelligence – the process of becoming intelligent – in terms of
progressive determination of constraints. This mechanism allows for concrete
types of intelligence to be crystallized from the unbounded space of possibili-
ties and manifested in observable forms. The operationalization should allow
for a pragmatic perspective that guide a design inquiry into engineering ar-
tificial general intelligence. The pragmatic aspects will gradually gain more
weight in Chapters 4 and 5.

At the roots of our conceptual framework, based on the open-ended intelligence
philosophy, is the principle that intelligence is a process which creates order from disorder.
Compare this principle to the more conventional way of thinking that intelligence is
a process of finding the correct order of nature and environment – which starts with the
assumption that the correct order exists in the first place. The line of thinking within
the scope of this work avoids the question of whether nature actually has inherent
order and structure. Rather, it adopts the epistemological position while taking into
account that any real world intelligence is necessarily embodied, situated and hence
constrained by limited resources. It means that from the perspective of an entity that
is in the process of becoming intelligent, the order of the universe (or the structure
of this entity’s immediate environment) is subjectively unknowable and has to be
created within the cognitive system of that entity. In order to understand what in-
telligence is and how to model it, it therefore makes sense to assume a disordered
universe and entities (agents) trying to make sense of it by creating order: indi-
vidually in their own cognitive systems and collectively through their shared local
environments.

The conceptual shift required by this attitude is well described by the three differ-
ent avenues of approaching the question how does form arise? formulated by Oyama
(2000): "preformationist", "interactionist" and "constructivist interactionist" (see page
33). The first two assume a priori sources of information. These sources get morphed
into concrete forms by an evolutionary process that is understood essentially as a
process of information transfer (Zenil et al., 2012). The "constructivist interactionist"
avenue does not assume the existence of a priori information preceding the process of
evolution and development, since the information that describes forms co-develops
along complex processes that give rise to these forms. We are taking the "construc-
tivist interactionist" avenue as cardinal and the first two as special cases of it. An
attempt to visualize the differences and relations among the three avenues is pro-
vided in Figure 3.1.

With a considerable concession towards simplification, Figure 3.1 illustrates how
the "preformationism" and "interactionism" are seen as reductions of the "construc-
tivist interactionist" schema1. The "preformationist" (3.1a) attitude amounts to view-
ing a process of development within a bounded time frame [t1, t2] and therefore ob-
serving already individuated structure S2 as-if a priori to the operation O3 and oper-
ation O3 as-if goal directed with respect to the informational content of the structure

1The didactically necessary simplification involves omitting the aspect of the progressive determi-
nation principle that requires operation Oi to be prone to change depending on the immediate struc-
ture Si on which it operates. This simplification allows the point we are making here to be emphasized.
For a more complete treatment of progressive determination, see Section 3.2.4 on page 70.

3.1. Introduction 57

FIGURE 3.1: Approx-
imative illustration of
relation and difference
of three avenues for ap-
proaching the question
of how does form arise?
(see page 33) when
viewed from the per-
spective of progressive
determination (Section
3.2.4). Si denotes
informational content
of an intermediate
structure observed in
a complex process; Oi
denotes intermediate
operations which pro-
gressively determine
structures. Note that
all three visualizations
suggest different views
of the same underlying

complex process.

(A) "Preformationism" is visualized as S2 → O3 → S3

(B) "Interactionism" is visualized as S2,4 → O3 → S3

(C) "Constructivist interactionism" is visualized as ...O1 → S1,2,4 →
O3,4 → S3 → O5...

S3. The "interactionist" attitude (3.1b) follows the same schema yet allows interac-
tions of multiple operations O3,4 on multiple as-if a priori structures S2,4 that lead to
the as-if goal state S3. "Constructivist interactionism" does not look at the process of
development in terms of bounded time, and therefore informational content of all in-
termediate structures S1,2,3,4.. progressively develops via interaction with operations
O1,2,3,4,5.. and does not lead to any goal state. Since in all real world situations we
have to consider time and space constraints, the "preformationist" and "interaction-
ist" attitudes in the great majority of pragmatic cases "just work". Yet when dealing
with complex self-organizing systems with a large degree of non-determinism these
attitudes reach their limits. In this thesis, above all in Chapter 4 and Chapter 5, we
will try to see how "constructivist interactionism" can help to deal with these limits
while still keeping a pragmatic attitude.

Let us now see how the described conceptual shift applies and informs the quest
for understanding intelligence and designing machine intelligence. It seems cus-
tomary and common-sensical to posit a single (albeit possibly complex) criterion
and position intelligence of humans, other known biological organisms, and artifi-
cial or natural (yet maybe not terrestrial) beings along a single dimension (see Figure
3.2). A single dimension is basically conceived to measure how well different types
of intelligence fare in searching for structure and order of their environments.

58 Chapter 3. Open-ended intelligence

FIGURE 3.2: The universe of possible minds (Yampolskiy, 2015)
positioning different kinds of mind and intelligence in an ab-
stract "optimization space" allowing them to be projected on a

single axis, first proposed by Bostrom and Ryan (2015).

This almost archetypical view of intelligence implies quite a few premises that
are often taken for granted. The first premise is that reality has an implicit struc-
ture (Zenil et al., 2012). The second premise is that intelligence has evolved for and
therefore is an instrument and means-to-ends for the survival of an organism. The
third and most important premise is that the environments (sensory spaces) to which
intelligences adapt by interacting do not change due to the interaction (i.e. are non-
reflexive). It does not take many logical steps to conclude from these assumptions
that intelligence is a complex convergent optimization process for the sake of sur-
vival that tries to adapt to the actual structure of reality and where optimization
criteria are extrinsically and objectively defined. It also promotes "understanding"
intelligence in terms of comparing and ranking different embodiments by how well
they perform. Following this logic, the "higher" the intelligence is, the more capable
it should be at finding and adapting to the structure of reality faster, better and more
efficiently.

A number of theories and scientific perspectives, introduced in Chapter 2, chal-
lenge at least some of these premises in important ways. Evolutionary develop-
ment (see page 31), niche construction (page 32), developmental systems theory
(page 33) and perceptual control theory (page 39) all show complex relationships
between organism, a cybernetic system and environment that goes beyond adap-
tationist paradigm. Additionally, ecological rationality (page 46) proposes a way
to think of intelligence as subjective in relation to immediate environments and se-
lective sampling of effective sensory spaces. The rate-distortion theory (page 46)
points to the information-theoretical account of selection for relevance aspect in a
perception-memory system where an organism has a say as to which part of sensory
input it discards in order to make sense of it. The concept of open-ended intelligence
provides a framework of distributed systemic cognition including an integrated phi-
losophy of how to think about intelligence that transcends adaptionist paradigms
and goal directed behaviour (see Figure 3.3). In this chapter we introduce the main
tenets of this philosophy and discuss its aspects relevant to the design inquiry into
understanding (and engineering artificial) intelligence.

3.2. Theory of individuation 59

FIGURE 3.3: The scaffold of a concept of open-ended intelligence with
complexity thinking as a ground and evolution, cognition and self-
organization as pillars embedded into the ground. Intelligence gets
bootstrapped through dynamic interaction of all these elements in an

open-ended way. Adapted from Weinbaum (2018).

3.2 Theory of individuation

The philosophy of individuation by Simondon (1980, 1992, 2005, 2009) opposes the
hylomorphic schema which posits the dichotomy of form and matter and sees the
form, the matter, the objects and the relations among them individuating together
without any primary principle defined prior to this individuation. It understands
an individual from the perspective of the process of individuation rather than the
other way around. An individual is a metastable phase in a process and is always in
possession of not yet actualized and not yet known potentialities of being:

Individuation must [..] be thought of as a partial and relative resolution manifested in
a system that contains latent potentials and harbors a certain incompatibility within
itself, an incompatibility due at once to forces in tension as well as to the impossibility
of interaction between terms of extremely disparate dimensions (Simondon, 1992).

An individual that is brought forward via this process is never a complete entity
but rather an intermediate state of becoming which stands out from its environment
just enough to be identified by an observer and possibly by itself. Such an individual
emerges only via relations to its immediate environment, which consists of other
individuating entities (together constituting a preindividual):

The relation is not an accidental feature that emerges after the fact to give the substance
a new determination. On the contrary: no substance can exist or acquire determinate
properties without relations to other substances and to a specific milieu. To exist is to
be connected. This philosophical proposition allows Simondon to establish the scope
of his project: to reconcile being (l’étre) and becoming (le devenir) (Chabot, Krefetz, and
Kirkpatrick, 2013, p. 77).

Importantly, Simondon’s theory of individuation, while being an abstract onto-
logical framework, at the same time promotes what is called ‘’concretization” - the
explanation of the emergence of observable and graspable objects and relations in
the physical, biological, cognitive and socio-technical evolution and development
(Veitas and Weinbaum, 2017; Weinbaum and Veitas, 2017a). Simply speaking, “con-
cretization” allows us to approach the very process of emergence of order from dis-
order in an abstract way. A schematic image of this process is depicted in Figure 3.4.
It visualizes a population of independent interacting agents, initially uncoordinated

60 Chapter 3. Open-ended intelligence

but still exchanging signals among themselves – a preindividual. Over time, some in-
teractions may grow more frequent and possibly reciprocal, constituting to stronger,
but not yet fully persistent links between some elements. Thus a fluid individual can
be observed in the population. If certain links become persistent, a fully formed indi-
vidual with a definite structure and a boundary, separating it from other members of
population, becomes observable.

FIGURE 3.4: Image of concretization process illustrating how
(a) preindividual consisting of a population of heterogeneous non-
coordinated agents morph into (b) fluid individual and then (c) fully
formed individual. All three are but intermediate stages of the individ-
uation process and constitute different assemblage configurations of
interacting elements psi in a population Ps (see also Section 3.2.4 and

Figure 3.11).

The cornerstone of the theory of individuation is the philosophy of information,
which extends the classical information theory of Shannon (1948). Other direct de-
scendants and components of the philosophy of individuation are theory of assem-
blages, metastability and the notion of progressive determination, all central to and
required for understanding open-ended intelligence – the process of individuation
of intelligent agencies. These aspects are introduced in the following sections.

3.2.1 Philosophy of information

Recall that Shannon’s information is defined as the reduction of uncertainty of a re-
ceiver due to getting a sender’s message. This notion carries an immense pragmatic
value in thinking and designing cybernetic systems where information is extrinsi-
cally signified. Signification of information is the operation of attaching a meaning to
it that is shared and makes sense for both sender and receiver. Without signification,
there cannot be a directional information transfer, since a sender can never "know"
how and if at all a receiver will be affected by the transmitted signal.

The mathematical theory of communication considers (ibid.) an elementary unit
of information, the meaning of which is assumed to be universally defined outside
the theory and therefore there is no need to consider the problematics of its significa-
tion. This allows information to be defined in terms of intrinsic entropy of a message
– without explicit reference to sender and receiver. Thus defined Shannon’s infor-
mation is the expected information contribution of a message to the reduction of un-
certainty, which is an entropy measureH = −Σpilogn(pi), where pi is the probability
of occurrence of the ith possible value of the source symbol and n is the measure of
information (e.g. n = 2 in a case where information is measured in bits).

3.2. Theory of individuation 61

It is surprisingly easy to overlook the aspect of signification when considering
interaction and information exchange among already individuated entities in an al-
ready individuated and defined environment – a set-up that is perfectly adequate
for engineering goal-directed cybernetic systems in a stable environment. Yet the as-
sumption of a universally defined meaning of information loses its value and power
in a developmental system, where the elements of a system are not a priori defined.
Moreover, the mathematical theory of communication actually supports the hylo-
morphic schema and makes it inescapable without challenging this assumption. The
inapplicability of Shannon’s information, which was defined explicitly to require no
reference to meaning, in this context needs no further comment apart from Shan-
non’s own words:

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently the mes-
sages have meaning; that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem (ibid.).

Interestingly, not long after the publication of Shannon’s seminal work, MacKay
(1969) noted the unfortunate consequence of this statement – that the warning has
been often forgotten and interpreted as irrelevance of notion of meaning to the whole
theory of information. It would be fair to say that this "unfortunate consequence" has
shaped the field until now.

Therefore, Simondon first and foremost extends the information theory by re-
quiring the signification of information to be individuated itself during the interac-
tion between sender and receiver. Traditional notions of form, matter and informa-
tion are revised by stripping them of ontological primacy with respect to each other.
These notions are seen as operators of a system of tensions which fuels the process
of individuation (Combes, 2013). Precisely this revision allows us to leave the hy-
lomorphic schema and embrace the open-endedness and fluidity of the process of
becoming. Oyama (2000) reconstructs almost the same revision in the domain of
developmental biology and evolution in terms of the developmental system theory
(see page 33).

Figures 3.1 (page 57) and 3.4 (page 60) partially illustrate Simondon’s extension
and its importance for the theory of individuation. In this sense, "preformationist"
(3.1a) and "interactionist" (3.1b) avenues of approaching the question of how does
form arise? correspond to the classical information theoretical perspective positing
operations O3,4 in terms of communication of the information content of structures
S2,4 without considering how this information content came to be in the first place.
"Constructivist interactionism" (3.1c), on the other hand, considers that the infor-
mation content of all observed structures in the process have been individuating
through their developmental histories. Figure 3.4 illustrates how information indi-
viduates in the process of "concretization" in terms of a structure and a boundary of
an assemblage (and individual).

3.2.2 Assemblage theory

Assemblage theory was introduced by Deleuze and Guattari (1987) and further mod-
ified and developed by DeLanda (2006) as a philosophy of society. Latour (2007)

62 Chapter 3. Open-ended intelligence

further develops an actor-network theory for approaching and exploring assem-
blages of social and technical objects. Assemblage theory provides an avenue for
conceptualization of a generative model of individuation. In this, assemblages are
sub-networks of heterogeneous individuals that have established partial compati-
bility among themselves. They possess an intrinsic though metastable individuality;
an individuality that does not depend on an external observer but only on the re-
lations that have been stabilized among their internal elements. DeLanda (2006)
has developed the theory as a philosophical framework explaining the emergence
of scalable social entities such as personal networks, social organizations, markets,
cities and nation states. General premises and concepts offered by the theory are
broadly applicable to the study of societies of cognitive agents and living systems
and, notably, cognitive systems themselves as coalitions of neurons and cognitive
processes (Weinbaum, 2013; Weinbaum and Veitas, 2017b).

The process of "concretization" as schematically illustrated in Figure 3.4 corre-
sponds to the emergence of assemblages from a population of independent and in-
teracting agents (Chabot, Krefetz, and Kirkpatrick, 2013). At its original level of ab-
straction, the assemblage theory provides a direction towards formulating concrete
mechanisms of the process of individuation and becoming, i.e. emergence of objects,
systems and subsystems and their relations from an initial state of disorder. Note
that while we emphasize the emergence of entities, the philosophy of individuation
and theory of assemblages describe processes that do not have an a priori direction –
they progressively develop along with the process. Both emergence and dissolution
of assemblages, entities and different forms of individuals can be accounted for by
the same conceptual framework. Theory of assemblages can be used for explaining
non-directional processes of evolutionary development and niche construction (see
pages 31–32):

One and the same assemblage can have components working to stabilize its identity
as well as components forcing it to change or even transforming it into a different
assemblage. In fact one and the same component may participate in both processes by
exercising different sets of capacities. (DeLanda, 2006, p. 12)

Before explaining the concrete mechanisms of assemblage theory, it is worth see-
ing how it integrates the Simondonian philosophy of information. Recall from Sec-
tion 3.2.1 that Simondon extends Shannon’s information theory by requiring emitter
and receiver of a message to develop a common signification (i.e. agree on the mean-
ing) of their respective signals before transmission can be considered an exchange
of information. Information thus individuates due to the process of interaction and
drives that process further. MacKay (1969) gives an excellent explanation of the im-
pact of this requirement on the theory of information, why it is necessary beyond
mathematical communication theory, and provides an informal description of it.
The crux of his account is that the information-content of a message is defined by
its meaning, which is "a relationship between message and recipient, rather than a
unique property of the message alone". Shannon’s information theory does not ne-
glect this fact, but avoids the question of meaning altogether by explicitly assuming
its a priori existence, a luxury not possible within the framework of the philosophy
of individuation. Further, MacKay (ibid.) provides a working definition of meaning:

[..] the meaning of a message can be defined very simply as its selective function on
the range of the recipient’s states of conditional readiness for goal-directed activity;
so that the meaning of a message to you is its selective function on the range of your

3.2. Theory of individuation 63

states of conditional readiness. [...] suppose, for example, someone tells you "it’s rain-
ing". What happens? You may be immersed in a book, and may not feel inclined even
to grunt an acknowledgement. But this does not mean that your understanding of the
message has had no effect on you. If a sudden call comes for you to go out of doors,
for example, you may now be ready to reach for umbrella or mac. If someone comes
in, you are likely to ask whether he got wet; and so on. What has been affected by your
understanding of the message is not necessarily what you do – as some behaviourists
have suggested – but rather what you would be ready to do if given (relevant) cir-
cumstances arose. It is quite possible that relevant circumstances may never arise, so
that a naively behaviouristic approach would reveal no sign that you had understood
the message. It is not your behaviour, but rather your state of conditional readiness for
behaviour, which betokens the meaning (to you) of the message you heard (ibid., p.
22,24).

Following this working definition, two types of information-content are pro-
posed: metrical, which increases the reliance of the receiver on the result (used in
Shannon’s theory of communication) and structural, which enables new features to
be added to the description of the state of conditional readiness and its context. Both
kinds of information-content reduce the receiver’s uncertainty but in very different
ways. A communication beyond strictly technical cases usually includes both as-
pects.

Now, observe that an individual’s state of conditional readiness is dependent on
the structure of that individual (be it a simple system, cognitive system or a brain). In
assemblage theory an individual is a collection of lower scale elements having sta-
ble information exchanges among them. So the information-content of interaction
among elements–assemblages in a population is determined by the internal struc-
tures of these assemblages, while these structures themselves individuate as a result
of the information-content of interaction – which is precisely the subject matter of
Simondon’s philosophy of information and inseparable from the mechanism of pro-
gressive determination.

Furthermore, assemblage theory builds on the distinction between internal and
external relations which explains relations between scales in a scalable system – a
multiplicity of recursively nested populations of heterogeneous assemblages which
themselves consist of populations of yet lower level elements (see Section 3.3.2).
It also develops concepts of territorialization and deterritorialization which are re-
sponsible for emergence and dissolution of boundaries that mediate the relations of
individuals with the rest of the population environment.

Territorialization and deterritorialization

The notion of interaction between processes of deterritorialization and territorializa-
tion originated from the work of Deleuze and Guattari (1983, 1987) – first in the
context of socio-economics of production, and then in relation to dynamical systems
theory and self-organizing material systems. DeLanda (2006) applies the concept
when developing assemblage theory as one of the dimensions / axes along which
the specific assemblage is defined. Such a dimension delineates variable processes
in which components of a system become involved. The involvement can stabilize
the identity of an assemblage by increasing the degree of internal homogeneity and
sharpness of assemblage boundaries – in which case it is referred to as territorial-
ization. Or, it could destabilize the assemblage by decreasing its homogeneity and

64 Chapter 3. Open-ended intelligence

blurring the boundaries – a case of deterritorialization. The main mechanism of terri-
torialization is the formation of habitual repetition, providing the assemblage with
a stable identity. The mechanism of deterritorialization is the breaking of habits,
which effectively influences and changes an identity (Smith and Protevi, 2013). The
process of "concretization" (Figure 3.4 on page 60) is equivalent to territorialization,
which is further elaborated by Figure 3.5:

FIGURE 3.5: Illustration of territorializaton and deterritorialization
dynamics within a population P s of interacting elements psi on a sin-
gle dimension. Assemblages individuated in population P s may be-
come elements on a higher scale – a population P s+1 (see Figure 3.11

in Section 3.3.2 for the elaboration of the scalable model).

Note that a population P s of elements psi of Figure 3.5 can interact on many di-
mensions simultaneously. These dimensions do not need to be synchronized – there-
fore the same population of elements can integrate or disintegrate at the same time in
different dimensions or form assemblages with different boundaries in each. An ob-
server making sense of such population of interacting elements selects the relevant
dimension of analysis, which is the selection for relevance aspect of model building
(see page 25).

Boundary formation

Processes of territorialization and deterritorialization give rise to asymmetry of in-
teractions among elements. Particular combinations of these asymmetries in turn
give rise to situations where some sets of elements find themselves interacting more
intensely among themselves than with other elements of a population that are not
within the set. This situation is precisely what defines an assemblage – a collec-
tion of elements separated from the rest of the population by a (more or less fuzzy)
boundary of lesser interactivity2. Boundaries effectively resolve how an assemblage
of elements interacts with its environment and delineates the emergent identity of an
assemblage as a whole. Such an assemblage with an established identity and proper-
ties – an agent – can become an element at a higher scale of individuation. Note that
boundaries defining the agent–environment distinction and the relations between
them are never entirely fixed. The functioning of any emergent agent is adaptive
and subject to change due to alternating temporal dominance of deterritorialization
or territorialization processes.

The mechanisms that are responsible for the formation of boundaries and the
bringing forth of coordinated activities in a population of agents P arise primarily

2Lesser interactivity could manifest itself either via reduced intensity of interactions or fewer di-
mensions across which interaction takes place.

3.2. Theory of individuation 65

from the agents’ intrinsic capabilities to affect and be affected by each other. Specific
characteristics of these interactions, e.g. their frequency, synchronization and coher-
ence, have a critical influence on the way agents are connected. Such influence finds
its expression in the reinforcement or suppression of connections among agents and
consequently on how strongly they may actually affect each other. This is how the
activity of agents within P progressively determines the topological organization of
the network of agents in P . The structural organization, in turn, affects the overall
function of the individual agents by selecting interactions.

Recall that the Simondonian philosophy of information (Section 3.2.1) requires
interacting elements or assemblages to signify the information – i.e. to reach mutual
compatibility of signals that are considered information in their exchange. Further-
more, information is defined as signals through which elements can affect each other.
Obviously, assemblages can be affected only by signals that permeate their bound-
aries, and therefore properties of boundaries determine signification of information.
Since boundaries of assemblages get formed in the process of territorialization and
individuation of agents, information also individuates within the same process.

Flynn (2011) provides an excellent metaphor covering subjectivity of information
when discussing Merleau-Ponty’s philosophy:

Merleau-Ponty argues that the Gestalt exists for a perceiving subject; it is not a part
of the world as it is in itself. The stimulus does not unilaterally affect the organism
in virtue of its absolute physical and chemical properties; it becomes a stimulus only
insofar as the organism constitutes for itself a vital milieu which it projects around
itself. The mouse in The Metropolitan Museum of Art is affected by the crumbs of
cookies on the floor, but not by the Velázquez painting on the wall. In the milieu that
the mouse constitutes, the crumb is desirable and the painting does not exist (ibid.).

Finally, recall Simon’s treatment of complex adaptive systems as having a prop-
erty of near-decomposability where a hierarchical structure can be devised by dis-
tinguishing between the interactions among subsystems, on the one hand, and the
interactions within subsystems, on the other (see page 17). Assemblage theory ac-
counts for the emergence of architecture of complexity observed by Simon (1962) in
natural physical and biological systems.

Internal and external relations

As discussed, the emergence of boundaries of an assemblage brings about the dis-
tinction between (1) relations and interactions among elements "inside" the assem-
blage and (2) interactions between elements "inside" and the ones "outside", which
cross the boundary of the assemblage. Boundaries also allow us to identify and de-
scribe identities of assemblages in terms of how they are structured internally or
how they structure their interaction with the environment. In a multiplicity of re-
cursively nested populations of heterogeneous assemblages which themselves are
collectives of lower level elements, internal relations are defined as relations among
lower-scale elements within the boundaries of assemblages. External relations are
then defined as relations among elements across the boundaries of assemblages -
i.e. with elements of other assemblages in a population3. Comparative intensities
and dominances of internal and external relations within a population of interacting

3The notions of external and internal relations, as used in this work, bear important differences from
relations of interiority and exteriority, which are the fundamental concepts within the philosophy of

66 Chapter 3. Open-ended intelligence

elements define boundaries of all assemblages in this population. A boundary of
an assemblage emerges from asymmetries of interactions first as an informational
membrane, selecting relevant information for an assembled individual and, only
then, as a structural and topological membrane (see Figure 3.6).

FIGURE 3.6: Internal
and external relations
within a population
of agents and their as-

semblages.

Consider for example a cell and a human body as assemblages at different scales.
The cell has a membrane and the human body has a skin, which, on the one hand,
are topological boundaries of these assemblages. On the other hand, they are infor-
mational boundaries, defining relations to the environment that are relevant for the
operation and persistence of each assemblage. The cell has ion gates on its mem-
brane, which allows only certain ions to pass and change the internal chemistry and
processes. The body has sensory organs which allow only certain types of environ-
mental signal to be registered by an organism – which is precisely the meaning of the
word "sense". Note that this adds an additional aspect to sense-making (see Section
2.3.8), since the development of "sense organs" is also a part of the process. Inter-
nal and external relations become more intricate in case of fluid individuals with
unclear topological boundaries and fuzzy informational membranes, such as brain
areas or even cognitive processes in a neural network. Here local asymmetries of
information exchange between elements may be the main, if not the only, avenue for
detecting and describing such fluid individuals – e.g. brain areas, social structures,
colonies of insects, flocks of birds, rhizomes etc.

The problem of detecting boundaries of fluid assemblages in a population of
interacting elements has been approached from the information theoretical perspec-
tive by the Integrated Information Theory, which originated from the works of Edel-
man and Tononi (2000) and Tononi (2004).

3.2.3 Metastability

The concept of metastability is mostly used to describe a far from equilibrium com-
plex system in terms of its movement in a stable state-space4. Such a system has a

open-ended intelligence and theory of assemblages. This is not to say that these concepts are not
related, but the precise treatment of this aspect is outside the scope of this work.

4The state space of a system is the set of all possible states in which the system can find itself. This
is a generalisation of the intuitive concept of the concrete, three-dimensional space which an organism
can explore to the abstract set of states between which a system can "move" when its properties vary
(Heylighen, 2015a, p. 69). No matter how multi-dimensional, large or even infinite a state space, it
is usually considered stable and invariable. Further, the existence of a clearly defined fitness function
and a measure of a system’s energy are often assumed. The stable state space and fitness function
together define what is called fitness, stability or energy landscape.

3.2. Theory of individuation 67

landscape with many attractors while most of the time "stuck" in "shallow" attrac-
tors which may or may not represent the system’s state of least energy. A metastable
system can be easily perturbed, in which case it moves over a border of one basin
of attraction to another (Figure 3.7a). How easy or difficult it is to perturb a sys-
tem depends on the shape of its energy landscape and the precise configuration of
the system’s parameters at the moment of perturbation. For example, if the energy
landscape contains deep attractors and a system has found a bottom of one of them,
it would be comparatively difficult to perturb it. On the other hand, if the energy
landscape is shallow or a system finds itself on the border of a basin, a minuscule
perturbation could change its whole dynamics.

Walker et al. (2004) have proposed a collection of measures for describing a sys-
tem’s resilience in terms of the shape of its stability landscape (i.e. stable energy
landscape) and immediate configuration which also apply for describing metasta-
bility. A system’s state has three attributes: (1) latitude – the width of the current
basin of attraction, determining how much system parameters have to change in or-
der for it to "move" between basins; (2) resistance – the depth of the basin of attraction,
determining how easy or difficult it is to change the system and (3) precariousness –
the current state or trajectory of the system, in terms of how close it is from the bor-
der of a basin of current attractor, determining the perturbation energy needed for a
system to cross the border and change the dynamics (Figure 3.7b).

(A) “Classical” metastability: A
metastable state of a weaker bond (a),
a transitional ‘saddle’ configuration (b)
and a stable state of a stronger bond

(c). Adapted from Harrison (2013)

(B) “Precariousness”: Three-dimensional stability land-
scape with two basins of attraction showing, in one basin,
the current position of the system and three aspects of re-
silience, L = latitude, R = resistance, Pr = precariousness.

Adapted from Leuteritz and Ekbia (2008).

FIGURE 3.7: Meta-stability described in terms of attributes of stability
landscape.

Weinbaum and Veitas (2017a) propose an "extended" concept of metastability
which, apart from the aspects discussed above, has a fluid fitness landscape. Recall
that a stable fitness landscape is defined by (a) a state space – relations among all
possible states – and (b) a fitness (or goal) function. A "classical" concept of metasta-
bility assumes that these two parameters are fixed as they define the identity of the
system itself. The "extended" metastability offers the possibility of describing the
dynamics of a system with fluid identity where fluid state space is influenced by
movements and interactions of its lower scale systems operating on it rather than
defined a priori. An example of a "classically" metastable system is water at 0 ◦C
temperature. If the water is still, it stays in a liquid state (even below the tempera-
ture of 0 ◦C), but if it is perturbed by vibration, it collapses into the state of ice. In
the framework described above, stable physical properties of water molecules de-
fine the state space at 0 ◦C temperature – the precarious configuration of the system
on the borderline between basins of attraction defining the liquid and solid states. A
system that is best approached by the concept of "extended" metastability is that of

68 Chapter 3. Open-ended intelligence

financial markets, which are an example of a sociotechnological system. Participants
of financial markets choose their actions on the basis of relative prices of stocks and
their movements. The price (and its movements) of a stock is determined by ex-
pectations of participants in the financial markets (and buy/sell actions that these
expectations get resolved to). Therefore participants heavily influence the system’s
"state-space", which they try to predict and act upon. Stock market crashes and bank
runs caused by no more than panic of a critical mass of participants of a system, as
well as inflated price bubbles, are examples of operation of "extended" metastability.
More generally, the fitness landscape of such a system is the product of a form of
social agreement (implicit or explicit) of participants of a system rather than defined
exogenously.

A concept closely related to "extended" metastability is reflexitivy. Reflexivity
refers to the circular relationships between cause and effect when each element both
affects and is affected by other elements. In particular, it refers to a feedback relation-
ship between observer (i.e. intelligent agent) and observed (i.e. environment): any
examination and action of agents “bend” the environment and affect the perception
and further decisions by the same agents. From its very definition, the sociotechno-
logical system is a reflexive system with a vast number of feedback loops. Reflex-
ivity, blurring the distinction between causes and effects, makes systems difficult to
analyse and predict. The contribution of reflexivity to the dynamic properties (e.g.
fragility – see Section 2.2.4) of a system depends on the kind of feedback mechanisms
that operate. A negative feedback has a stabilizing effect on the system’s behaviour
as it resists any change in the state of the system. This is not the case with positive
feedback, which has the opposite effect of destabilizing the system by amplifying
any disturbance. The crucial aspect of the reflexivity property for a sociotechno-
logical system is that patterns of modelling and representation of the world have a
decisive effect on the type of feedback loops which develop in it. This is grasped by
the example of "extended" metastability when for example a stock market crash is
caused by a positive feedback: a price of a stock randomly fluctuates down which
may bring stressed traders to sell that stock because they predict a further decrease.
Which indeed becomes a self-fulfilling prophecy: each sale order further reduces the
price and drives an avalanche of sale orders which may eventually crash the stock
market.

Walker et al. (2004) formulate the concept of panarchy to account for the reflexive
nature of a complex metastable system in terms of its resilience. Panarchy considers
how latitude, resistance and precariousness attributes are influenced by the scales
above and below the focal scale of a complex system with scalable structure (see
Figure 3.8 on page 69). Further, Marsh and Onof (2008) try to provide a more formal
account for relations among scales in their model of stigmergic social epistemology
applied to distributed cognition. They propose a modified particle swarm algorithm
where the global fitness function ft is defined as dependent on the actual configura-
tion of particles at time t within the state space:

[..] this would amount to having the moves made by the individuals (either each indi-
vidual’s trajectory, or perhaps only the evolution of the group’s best position) have an
impact upon the actual shape of the landscape – one could imagine these individuals’
movements causing earthquakes or landslides, for instance (ibid., p. 11).

3.2. Theory of individuation 69

FIGURE 3.8: “Panarchy”: illustra-
tion of the influence of states of a
system at scales above and below
the focal scale, emphasizing func-
tional aspect of the meta-stability
landscape and the source of its flu-
idity. Adapted from Walker et al.

(2004).

Weinbaum (2013) and Weinbaum and Veitas (2017a) develop an abstract model
of synthetic cognitive development based on scalable cognition and scalable indi-
viduation which conceptually describes how recursively nested scales or stratas of
assemblages emerge in the process of individuation and boundary formation. The
model is an integral part of the philosophical framework of open-ended intelligence
and will be discussed in Section 3.3.3.

In summary, (1) the "classical" metastability is the phenomenon when a system
is permanently in a configuration other than the system’s state of least energy while
the (2) "extended" metastability describes the situation when basins of attraction are
in permanent flux so that a system has no defined stable state of least energy to be-
gin with. The extended concept of metastability allows us to establish a more formal
connection between the theory of individuation and complex adaptive systems. The
"order from noise" principle of complexity science (see page 34) can be intuitively
grasped by imagining the state space in Figure 3.9a being "shaken" by an influx of
additional noise. The energy from the noise increases the probability of a system
overcoming the “saddle” configuration of local minimum and ending up in a differ-
ent basin of attraction. In the case of a fluid state space, the noise does not "shake"
the state-space, but rather changes its very configuration (see Figure 3.9b).

(A) Stability landscape. (B) Metastability landscape.

(C) Reflexive metastabil-
ity: patterns of interac-
tion among particles can
be seen as a fluid network
structure which, in case of
persistence, gives rise to
metastability landscape.

FIGURE 3.9: Degrees of metastability.

An important implication of this difference is that in a fluid state space we can
relate the transformations of a state space configuration to the movement of a sys-
tem in it, without positing an external source of noise or energy, as is usually done
within the framework of classical metastability. Furthermore, an extreme case of a
fluid state space would be the situation where there is no observable energy land-
scape to begin with, apart from more or less fuzzy patterns of system’s behaviour
(see Figure 3.9c). The relation of system’s movements in a fluid state space to the

70 Chapter 3. Open-ended intelligence

configuration of that state space is crucial for understanding progressive determina-
tion – the mechanism of individuation.

3.2.4 Progressive determination

Progressive determination is the process which describes the evolutionary develop-
ment of a metastable system – how the metastability (Figure 3.9b) and then stability
(Figure 3.9a) landscapes of a system are determined by the unconstrained interaction
of a population of elements with no landscape to begin with (Figure 3.9c). Progres-
sive determination is an abstract mechanism of individuation of complex systems,
whereas it can be said that the more determined a system’s metastability landscape,
the more concrete individuality it possesses.

An extended metastable system is reflexive in that the "movement" of a system in
its energy and fitness landscape changes the landscape which recursively influences
– i.e. progressively determines – further movements of the system. Progressive de-
termination can be therefore seen as a chain of transformations where an operation
transforms a structure and a structure in turn transforms an operation (Weinbaum
and Veitas, 2017a). More formally it is represented as follows:

...S1 → O1 → S2 → O2 → S3 → ...→ On → Sn+1...

• operation Oi is a function which transforms one structure to another: S2 =
O1(S1);

• likewise, structure Si is a function which transforms one operation to another:
O2 = S1(O1);

• note that S1 6= S2 and O1 6= O2 – they are different functions;

• the symbol → denotes the relations of dependency between the transformations,
so that every transformation depends on the full history of previous transfor-
mations.5

The concept of progressive determination embraces the philosophy of informa-
tion of Simondon in that information that guides reflexive processes in a metastable
system individuates within the process itself and is not in any way a priori defined
(see Section 3.2.1). In order to become coordinated, individual processes in a diverse
population first have to find and negotiate the basis for their interactions and select
"meaningful" ones while developing criteria of meaningfulness at the same time.

Stigmergy – a somewhat better known and researched concept in biology and
computer science (see page 43) – is a special case of progressive determination in
that it is an indirect, mediated mechanism of coordination between actions. In stig-
mergy the trace of an action (i.e. operation) left on a medium (i.e. structure) stimulates
the performance of a subsequent action (Heylighen, 2016). Stigmergy relies on the
cybernetic relation of agent-environment-agent-environment through ongoing and
mutual modification or conditioning. Marsh and Onof (2008) note that emergence –
a novel behaviour arising from the lower scale of a system – and immergence – an

5I.e. it should not be understood as a piping of inputs and outputs through the chain of immutable
transformations.

3.3. Individuation of cognition 71

individual action informed by the global state / higher scale of a system – go hand
in hand and should be approached as "perpetual iterative looping" in a stigmergic
way.

Now, after establishing relations between individuation of identities, metastabil-
ity of systems made of networks of interacting elements and emergence as a result
of progressive determination of structure and function, it is the place to introduce
an important aspect of the computational approach which will be the basis of the
rest of this work – starting from Chapter 4. Our proposal is to represent the stigmer-
gic environment and the structural aspect of progressive determination by a graph
data structure implemented in a computational medium. Furthermore, we suggest
representing the operations of progressive determination and stigmergic actions as
computational processes reading from and writing to this graph data structure. Such
a framework could be said to implement a computational stigmergy or stigmergic com-
puting. Next we turn to discussing how the mechanisms of individuation, progres-
sive determination and metastability reveal themselves in the context of becoming
intelligent – i.e. individuation of cognition.

3.3 Individuation of cognition

Open-ended intelligence is manifested in concrete environments and embodiments
via the process of progressive determination described in previous sections. Re-
call the continuum of freedom and constraint where open-ended intelligence repre-
sents the unconstrained potentialities of different behaviours while a deterministic
algorithm represents the most constrained algorithmic behaviour. The freedom and
constraint continuum relates open-ended intelligence to "general" and "narrow" AI,
human-level intelligence, and deterministic algorithms by conceiving a mechanism
of progressive determination of constraints through which more observable mani-
festations of intelligence in specific situations and environments could emerge. This
is what we refer to as individuation of cognition. Figure 3.10 shows how individua-
tion of cognition relates to the philosophy of individuation and concepts discussed
above, including degrees of metastability and the process of "concretization", which
are different perspectives towards the same process.

3.3.1 Pre-, fluid and fully formed individuals

We necessarily think of intelligence in terms of its already consolidated and man-
ifested forms in concrete embodiments – humans, animals, fish, robots, fungi, so-
cieties... Yet from the perspective of open-ended intelligence, the very process of
becoming intelligent – the process of phylogenetic, ontogenetic and cognitive devel-
opment – is much more primary and important for understanding intelligence and
mind than any of its concrete and observable instantiations. Nevertheless, the pro-
cess can be looked at in terms of the structures it gives rise to. We usually refer to
such cognitive structures and, moreover, their embodiments as individuals or agents.

Looking at intelligence from the perspective of the processes of its emergence
rather than at already formed intelligent agents, allows us to see beyond the bound-
aries of nature versus nurture and environment versus organism. Actually, the dif-
ference between "nature" and "nurture" can be observed only from the perspective
of a single point in time marking the specific stage of developmental process. Yet

72 Chapter 3. Open-ended intelligence

FIGURE 3.10: Individuation of cognition from the perspectives of pro-
gressive determination of constraints (Figure 2.1), stabilization of a

landscape (Figure 3.9) and "concretization" (Figure 3.4).

in terms of the evolutionary process at large, the distinction itself does not make
much sense – obviously phylogenetic processes are influenced by the environment
at least in terms of selective pressures in the process of natural selection. This per-
spective makes the distinction between agent and environment much less clear than
is usually posited both in evolutionary biology and artificial intelligence research.
Furthermore, it is said that the evolution of intelligence internalizes certain aspects
of environment to the organism thereby allowing it to adapt (see the concept of vi-
carious selector in Section 2.2.1). Yet at the imaginary start of the process, when
nothing was yet "internalized", what was the organism that could have started the
very process of internalization?

In the process of individuation, individuals are not preceded by already individ-
uated entities or principles that instruct the trajectory of their formation, but by a
state of affairs which is as yet undetermined – the preindividual. Even after an indi-
vidual has reached a relatively stable state, the preindividual is not exhausted and
persists in the individual. This is what allows its subsequent individuation or be-
coming. The unity characteristic of fully individuated beings (i.e. identities) which
warrants the application of the principle of the excluded middle, cannot be applied
to the preindividual (Weinbaum, 2015). Fluid individuals do not have clearly consoli-
dated boundaries or agency and in that sense could be understood as "not yet fully
formed". On the other hand it would not be correct to think of fluid individuals
and identities only as intermediate states in the process of formation of individuals.
Quite on the contrary, it makes sense to perceive more or less fluid individuality as
a more befitting expression of intelligence than fully formed individuals.

A study and debate around plant intelligence (Firn, 2004; Trewavas, 2003, 2004)
provides fertile insights into general intelligence, spanning all its possible manifes-
tations. Notably, it reminds a broad definition of intelligence by (Stenhouse, 1974) as
“adaptively variable behaviour within the lifetime of an individual”. The broad def-
inition does not relate intelligence to its functional expressions, such as movement,
and implementing mechanisms, such as nervous systems or brains. Intelligence is
a property that can be attributed to living organisms of all kinds and therefore is
inseparable from life. Every form of life is intelligent to an extent that allows the

3.3. Individuation of cognition 73

organism to "adaptively vary".

3.3.2 Scales of individuation

Simondon emphasizes that relations between individuals also undergo individua-
tion: "A relation does not spring up between two terms that are already separate
individuals, rather, it is an aspect of the internal resonance of a system of individuation.
It forms a part of a wider system" (Simondon, 2009, p. 8). In particular, individuation
never brings to light an individual in a vacuum but rather an individual-milieu dyad
that defines the boundary between an individual and its environment (see Section
3.2.2). This dyad contains both a system of distinctions and a system of relations.
The individual and its milieu reciprocally determine each other while developing as
an integrated system wider than the individual (Weinbaum and Veitas, 2017a).

Notions of individual-mileau dyad, boundary and environment bring forth the
image of scales and relations among them. An individual is identified and under-
stood first and foremost as a part of a larger whole, which is the environment. Yet
the individual itself is comprised of smaller scale components and an ecosystem
of internal boundaries. The concept of different interacting scales is inescapable in
evolutionary developmental thinking and has already been discussed in terms of
units, levels of selection and interactions between them (see Section 2.2.2), hierarchi-
cal evolution (see page 16), meta-system transition (see page 20) and control system
hierarchy within perceptual control theory (see page 39) as well as the panarchy
model in the metastability context (see Figure 3.8). The model of scales of individu-
ation is a conceptual umbrella, providing a philosophical ground for these notions
in the context of open-ended intelligence.

In this model (see Figure 3.11), individuation is a process that takes place at mul-
tiple scales, both structural and functional, of the individuating system. We describe
the model at some scale S, where we observe a population of agents Ps. Every agent
in Ps is a product of self-organization into assemblages of simpler agents at the lower
scale S − 1. Similarly, super-agents Ais that emerge at scale S are the elements at the
higher scale S + 1. The individuation of agents, therefore, is taking place simulta-
neously at multiple scales. In most cases, lower scale agents must have more stable
properties than higher scale agents. Instability of agents at lower scales would make
higher level organization much less probable – see the probabilistic consideration in
terms of two watchmakers by Simon (1962) (see page 16 for a classical example).

Scales differ not only structurally but also temporally. As a cognitive system
individuates, complex objects emerge and their interactions may become slower in
comparison to their lower scale components. Generally, the relative frequency of
interactions at scale S is lower than those at scales lower than S and faster than the
frequency of interactions at scales higher than S.

Following Simondon’s understanding of information (see Section 3.2.1), as new
individuals Ais emerge at scale S, new information is being created. This informa-
tion is expressed in the structural and functional distinctions that become apparent
at that scale. Whatever remains incompatible among the agents of the lower scale
does not get expressed in the emergent new structures. Across multiple scales of
individuation, these incompatibilities remain as the preindividual.

Scales of individuation provide a conceptual tool for a holistic perspective which

74 Chapter 3. Open-ended intelligence

FIGURE 3.11: Relationship among scales, populations and boundaries. The focal
scale of analysis is S. S + 1 is the higher scale while S − 1 is the lower scale.
Ps denotes a population of agents at scale S. Solid circles denote the agents of
population P at any scale. Dashed lined circles denote super-agents at any scale
– e.g. As at the centre of the figure denotes a super-agent that emerges from the
interactions of agents in Ps. Super-agents at scale S are the agents of the population
Ps+1. The ith super-agent at scale S is denoted Ais, the superscript is omitted if not
necessary. Also, the subscript s is omitted from A or P in the text if it is redundant.

Adapted from Weinbaum and Veitas (2017a).

is often neglected when taking an analytic approach of looking at each scale sepa-
rately. First and foremost, importantly for this work and specifically for the artifi-
cial general intelligence programme, the model of scales of individuation relaxes
the premise of the goal-directed nature of intelligence. In the words of Powers,
Clark, and Farland (1960), "higher-order perceptions are kept in their goal-states by
specifying lower-order goal-perceptions; the higher-order system decides on a goal-
perception for the lower-order system, but does not actually do anything to achieve
it. Thus each goal-seeking system is autonomous to the extent that it must contain
the circuitry for making its own feedback signal approach its given reference-level
and for recording its own store of potential reference-signals for later use: but each
goal-seeking system is controlled to the extent that it does not choose which of its
past experiences are to serve as goal-perceptions" (ibid., p. 310). When seeing the
individual-milieu dyad as a system (i.e. considering environment as part of the sys-
tem), it is no longer possible simply to assume that a system is controlled by exter-
nally defined goals, as some of them are defined "within" the system. Even when
it makes sense to say that lower level goals or reference values can be derived from
the higher order goals, this derivation is not straightforward nor linear in a sense
that the lower level intelligent systems actually have a say when adjusting reference
values of themselves.

3.3.3 Synthetic cognitive development

Synthetic cognitive development is a model of individuation of cognition from the
vantage point of an individuating agent and is a generalization of human cognitive
development. Since synthetic cognitive development operates within the frame-
work of scales of individuation, it can be viewed from internal and external per-
spectives (Figure 3.12). In a scalable system, every subsystem can be positioned at a
focal scale s between higher s+ 1 and lower s− 1 scales . A lower scale consists of a
population of elements which integrate to a subsystem at a focal scale; a higher scale
consists of a population of subsystems of the focal scale.

3.3. Individuation of cognition 75

FIGURE 3.12: Internal and external perspectives to relations between scales.
Adapted from Veitas and Weinbaum (2017).

Internal perspective

An internal perspective approaches the process of coordination "as if from inside"
the individuating assemblage in a population of agents. As Weinbaum and Veitas
(2017a) point out, the mechanisms that are responsible for bringing forth coordi-
nated activities arise primarily from agents’ intrinsic capabilities to affect and be
affected by each other. The specific characteristics of the interactions, e.g. their fre-
quency, their synchronization and coherence, have a critical influence on the way
agents are connected. Such influence finds its expression in the reinforcement or
suppression of connections among agents and consequently on how strongly they
may actually affect each other. This is how the activity of agents within population
P progressively determines the topological organization of the network of agents
in it. The structural organization, in turn, affects the overall function of the indi-
vidual agents by selecting interactions. Higher order agents emerge as assemblages
when many incompatible elements interact and achieve a certain degree of mutual
or collective compatibility. Connections between compatible agents are reinforced
while other connections tend to be suppressed. In the course of such recursive se-
lective interactions, groups of compatible agents assemble into distinct compound
organizations resulting in individuated super-agents. Weinbaum and Veitas (ibid.)
further clarify the criteria for compatibility utilized in the selective process and the
mechanism of reflexive mutual selection taking place among agents.

Criteria for compatibility

Agents overcome their initial incompatibility by constraining each others’ regimen
of behaviours. In other words, there is a process of reflexive selection going on where
every agent selects with which other agents in the population it can interact. Three
understandings of compatibility from the simpler to more complex are presented
below:

Synchronization – Agents that produce effects (become active) at the same time will
tend to reinforce their connections. The kind of compatibility that is selected
by this criterion is temporal coincidence, which may indicate with some prob-
ability that the synchronized agents are causally affected by either the same

76 Chapter 3. Open-ended intelligence

event or by events that are causally connected, or events that are otherwise
correlated. The formation of synchronized clusters of agents is the simplest
form of individuation. Synchronized groups will tend to reinforce their syn-
chronized behaviours and suppress their out-of-sync behaviours. Examples of
individuation following this criterion can be found in neural networks. The
Hebbian rule that neurons that fire together also wire together is one appli-
cation of this criterion. A more complex application is provided by Edelman
and Tononi (2000) who hypothesize that spontaneous synchronization among
groups of neurons is the basis of consciousness6. Both are examples of cogni-
tive development at the scale of groups of neurons.

Coherence – Agents that produce effects (become active) in response to informa-
tive patterns (not necessarily synchronized) that represent the same category
or type, or a group of mutually supporting logical propositions, or a group
of associative patterns, will tend to reinforce their connections. The kind of
compatibility that is selected by this criterion is much more abstract than syn-
chronization and requires a context of operation. The agents connecting ac-
cording to this criterion form coherent clusters. Clearly, in this general form,
the coherence criterion is underspecified. Coherence will normally operate as
a selective criterion only in populations of relatively complex agents where
the information that agents exchange already signifies lower level individu-
ated objects. Such objects provide the context that further determines what
coherence means. Thagard (2002) explains coherency as the joint property of
propositions that tend to be selected together or rejected together when tested
in the context of a certain domain or state of affairs (see also Section 2.3.4).
Thagard’s understanding of coherence distills a second kind of compatibility,
which we can generally describe as compatibility in signification or meaning.

Coordination – Coordination is broadly defined as functional compatibility. In fact,
synchronization and coherence can be described as special cases of coordina-
tion. Agents that interact, process information and produce effects that jointly
realize a function or a goal are said to coordinate their operations, thus pre-
senting functional compatibility. Connections among agents that support the
coordinated activities will be reinforced while those that disturb the coordi-
nated activities will be suppressed. The agents connecting according to this
criterion will form coordinated clusters. As in coherence, coordination will op-
erate as a selective criterion only in populations of relatively complex agents
and where the information that agents exchange already signifies lower level
individuated objects and their relations. Such objects provide the context that
further determines the nature of the function or goal that is performed by the
coordinated clusters. Autopoiesis (Maturana and Varela, 1980) is an illustra-
tive example of a self-organized coordination. Remarkably, autopoeisis is a
function that operates in relation to the same cluster of agents that realizes it
and therefore does not require an outside observer for its definition. Yet func-
tional compatibility is not limited to this family of self-determined functions.
Coordinated clusters may also emerge in response to signals mediated by the
higher scale and as such are external to the population of agents under con-
sideration. These signals guide selection by providing an external criterion of
functional efficacy. In other words, the actual compatibility criterion of coordi-
nation may be either self-produced or external. Emergent agents, accordingly,

6See also Tononi, Sporns, and Edelman (1992) for a more detailed description.

3.3. Individuation of cognition 77

may be self-coordinating or coordinated in relation to an external state of af-
fairs, as well as be affected by both modes. For an overview of coordination
mechanisms see Heylighen (2013).

Reflexive mutual selection

Individuated entities are the product of a recursive resolution of incompatibilities
via synchronization, coherence and coordination. It is a process of reciprocal selec-
tion where agents within a population repeatedly select communication links and
interactions that increase compatibility according to these criteria. The reinforce-
ment of compatible interactions and suppression of incompatible interactions pro-
gressively determine assemblages of integrated agents within the population. Struc-
tural changes in the network of agents drive further selections and this progressive
determination, which continues until the network achieves relative stability with
consolidated super-agents. At this elementary level, individuals emerge as products
of an evolutionary developmental process: the heterogeneity of agents in popula-
tion P provides the variation and the various compatibility criteria provide the se-
lective elements of the process. The retention of compatible clusters is inherent in
the process since by definition mutual compatibility among agents is preferred and
reinforced. Otherwise, no individuation and no cognitive development could have
taken place.

Inspired by Edelman’s theory of neuronal group selection (Edelman, 1987; Edel-
man and Gally, 2013; Tononi, Sporns, and Edelman, 1992) the reflexive and recursive
characteristics lie at the basis of the synthetic cognitive development which extends
neuronal group selection to general networks of agents. The selective criteria of
compatibility that are derived from the theory of individuation extend the synchro-
nization criterion in the case of neuronal groups. Reflexive mutual selection (termed
"reentry" by Edelman) is a mechanism operating within a network of interacting
agents. Consider two groups of agents A and B (see Figure 3.13). Each group con-
tains similar agents with some variety in their pattern of behaviour. The groups are
interconnected internally and across. Following a signal produced by some agent
in group A, a subset of agents in group B will respond by producing signals too.
This activation will spread both internally in B and across back to A (where some of
the agents are already active too). A subset of agents in A will respond to the signals
coming from B such that a chain reaction of signals will propagate back and forth be-
tween A and B. In some cases, after a few cycles of exchange, a signal, whether from
an agent in B or A, will be received by the initiating agent and will cause it to pro-
duce a signal similar to the one that initiated the whole exchange. If this happens, a
closed activation loop begins and the groups will enter a period of sustained mutual
activation that will continue until it is disrupted by other signals. Sustained activa-
tion patterns and sequences of interactions that arise in a similar manner within the
population of agents are the products of what is called a reflexive mutual selection
process.

External perspective

An external perspective to synthetic cognitive development approaches individuat-
ing assemblages in a population of agents by looking at them "as if from outside"

78 Chapter 3. Open-ended intelligence

A B

A1

A2

A3A4

A5

A6

A7 B3

B2

B5

B1

B4
B6

B7

FIGURE 3.13: Two connected groups A and B and the formation of
sustained mutual activation. The signal propagation path of the sus-
tained activation is indicated in red. Other paths such as A3-B1-B2-
A5-A3 are topologically possible but are not selected because activa-
tion depends also on the informational content and timing. Adapted

from Weinbaum and Veitas (2017a).

(see Figure 3.12) trying to capture the emergent properties of assemblages as super-
agents.

Integration and disintegration

In a dynamic population of interacting agents where the processes of territorializa-
tion and deterritorialization (see page 63) are active, we can observe emergence of
super-agents with distinguishable behaviours, properties and identities – i.e. the
integration. Likewise, we can observe change, adaptation or dissolution of these be-
haviours and properties over time – i.e. the dissintegration. The observation of
integration and disintegration of super-agents happens on one level above the focal
level, where these processes happen from the interaction among lower level ele-
ments – hence the "external" perspective.

Integration is a process which can happen locally or globally in a system and leads
to the higher levels of coordination among some elements of its population at
any scale. Clusters of elements which coordinate more strongly among them-
selves than with the rest of the population start forming an assemblage which,
after reaching a certain level of internal coordination and resilience, can be
identified as a newly formed subsystem with unique characteristics.

Disintegration is obviously the process in the opposite direction from integration:
it leads to a lower level of coordination among elements of a given subsystem,
ultimately reaching a level where the boundary between elements within the
subsystem and elements outside the subsystem dissipates - i.e. it disintegrates
and no unique properties can be observed at a higher level.

Despite being always present, processes of integration and disintegration are
never symmetric: at every given moment either one is stronger, giving rise to the
complex dynamics of a complex adaptive system in an ecology of other complex
adaptive systems. The interplay between the processes of integration and disinte-
gration of variable strength and the importance of this interaction for the growth of
the cognitive system is captured by the scheme of synthetic cognitive development

3.3. Individuation of cognition 79

(see Figure 3.14). The maintenance of the interaction of the processes of integration
and disintegration in a synthetic cognitive system is instrumental for sustaining its
resilience and enabling open-ended development.

The lesson of complex adaptive systems is that processes of integration (towards
order) are as important for the self-organization of the system as processes of disin-
tegration (towards fluidity).

Cognitive dissonance

The approach to cognitive development as an interaction or sequence of integration
and disintegration cycles is supported by several theories. Leon Festinger’s theory
of cognitive dissonance, developed in the 1950s, focuses on a state of mind hold-
ing two or more elements of knowledge which are relevant but inconsistent with
each other (Harmon-Jones, 2012). It is arguably the normal state of an intelligent
agent engaged in a life-long activity of making sense of its environment. The theory
proposes that incompatibility of the elements creates a state of discomfort or "disso-
nance" which is proportional to the degree of incompatibility – the lack of integra-
tion. Further Festinger hypothesized that persons experience an arousal – usually
unpleasant emotions – due to the dissonance which motivates them to engage in
"psychological work" to reduce the inconsistency. Cognitive dissonance theory in its
original form generally enjoys experimental support. Particularly interesting are ex-
periments showing that during the state of dissonance individuals evidence arousal
and report negative affect (ibid., p. 2). Studies in cognitive neuroscience indicate the
tendency of a cognitive system to choose a single explanation of sensory experience
by constraining multiple possibilities, thereby reducing internal uncertainty or dis-
sonance. For example, the entropic brain hypothesis of Carhart-Harris et al. (2014)
points to the association between perception of identity and organized brain activ-
ity. The dynamic core hypothesis of Edelman and Tononi (2000) likewise connects
concepts of immediate consciousness with synchronized activity of neuronal groups
and areas in the neocortex.

These observations indicate the tendency of a cognitive system towards increased
coherency both internally and in its relationships with the environment. Neverthe-
less periods of reduced coherency are necessary for the cognitive system in order to
explore the possibilities of higher coherency – a cognitive development.

Arousal and emotion

Contrary to the established scientific opinion of the end of 20th century, feelings and
emotions are just as cognitive as any other percepts (Damasio, 2008, p. 16) and their
role cannot be overlooked when considering the development of a cognitive system.
While currently the importance of emotions and feelings for the overall operation of
a cognitive system is increasingly accepted, the integration of an "emotional system"
into the model of cognition is still problematic. Damasio (ibid., p. 284) proposes
a view of emotions as an immense collection of changes occurring in both brain
and body, usually prompted by particular content while being felt as the conscious
perception of those changes. This proposal is strikingly similar to the two-factor the-
ory of emotion by Schachter and Singer conceptualizing emotion as general arousal
plus a cognitive label attached to it (Cooper, 2007, p. 58). The state of arousal starts

80 Chapter 3. Open-ended intelligence

a chain of events within an organism which usually leads to the decrease of arousal.
These events can take a form of internal "psychological work" (Harmon-Jones, 2012)
or external actions in the environment, both of which can be considered as sense-
making activities. Further, Damasio (2008) differentiates between primary emotions
and secondary emotions. Primary emotions are "wired from birth" and constitute what
is understood as drives and instincts. Secondary emotions are acquired by creating
systematic connections between primary emotions and categories of objects and sit-
uations (ibid., p. 151).

Cognitive development

The theory of cognitive development (see Section 2.3.6) posits identifiable patterns of
individuation of the human cognitive system which are described as developmen-
tal stages (Piaget, 1971) or truces (Kegan, 1982), usually ordered in predictable se-
quences. Cognitive development theories generally describe an "evolution of mean-
ing" (ibid.) – recursive subject and object relationships in which the subject of the
previous stage becomes an object during the next stage. The process is not linear,
but rather is manifested through sequences of integration and disintegration of cog-
nitive structures (i.e. developmental truces).

Human cognitive development is usually understood as a predictable and finite
sequence of developmental stages. Weinbaum and Veitas (2017a) argue that both
the predictability and finiteness of cognitive development are not ingrained nor nec-
essary properties of the process but rather constitute historically shaped superficial
characteristics. For example, the relative stability of observable stages of child de-
velopment are related to more or less stable external influences of parents, peers and
society as well as to genetic predispositions. Likewise, the fact that mature individ-
uals rarely undergo transitions to higher levels of cognitive development is possibly
related to reduced environmental pressures to engage in the "psychological work"
that is needed for such transitions. The rationale of seeing cognitive development
beyond its observable predictability and finiteness is instrumental for the framework
of synthetic cognitive development, which aims to describe the genesis of a general
cognitive agency as a continuous individuation process.

3.3.4 The scheme of cognitive development

Weinbaum and Veitas (ibid.) propose a scheme which conceptualizes cognitive de-
velopment as an observable sequence of integration and disintegration processes
progressively determining the cognitive complexity of an agent. The progressive
nature of cognitive development is manifested by increasing capacity of sense-making.
This process does not follow a trajectory of monotonous adaptation but rather ad-
vances in a punctuated manner going through relatively stable stages. The enactive
nature of sense-making (see Sections 2.3.7 and 2.3.8) implies a reflexive relation be-
tween system and environment. At every state, both the cognitive system and the
environment have more than one option to relate to each other. Therefore every
state of the interaction is characterized by a unique trade-off between freedom and
constraint (see Section 2.1.5) of the cognitive system when choosing the future de-
velopment trajectory. Additionally, system–environment boundaries are themselves
subject to variation. We propound that an immediate configuration of the cognitive
system in terms of the freedom and constraint trade-off in humans is closely associated

3.4. Summary of the chapter 81

with the level of experienced cognitive dissonance, a suggestion supported by the
entropic brain hypothesis of Carhart-Harris et al. (2014). The system achieves higher
levels of cognitive complexity via periodic fluctuations in its level of cognitive disso-
nance. When the cognitive dissonance of a system is low, it undergoes constrained
periods of development with more predictable developmental trajectory. When cog-
nitive dissonance is high, the future trajectory of a system becomes more divergent.
A further hypothesis is that emotions are mechanisms that guide the selection of the
developmental trajectories of the cognitive system by modulating the sensitivity of
the system to environmental stimuli (Weinbaum and Veitas, 2017a, p. 22).

Figure 3.14 is a scheme of cognitive development as a variation of cognitive dis-
sonance versus coherence of a system which can be mapped to certain cycles. These
cycles emerge from the attempt to balance opposing tendencies to suppress the un-
predictability of the cognitive system on the one hand and keep it open for change
on the other.

Stage 1 Stage 2 Stage 3 Stage 4 Cognitive
complexity

C
og

ni
ti

ve
di

ss
on

an
ce 1

2

3

4
5

67

8

9

FIGURE 3.14: A scheme of synthetic cognitive development qualitatively visu-
alizing the dependency of increasing cognitive complexity on the variation in the
level of cognitive dissonance of a system. The bold curve represents the actual
developmental trajectory. Circles with numbers represent states of development,
arbitrarily chosen for illustration. States (1), (3), (7) and (9) mark high cognitive
dissonance states where the system has the highest possibility of "choice" between
alternative developmental trajectories. Dashed lines are drawn at stage (7) to illus-
trate multiple possible trajectories that are actually present at every point along the
developmental trajectory. States (2), (4), (5) and (8) mark stable periods when the
operation of a cognitive system is constrained. Stages 1, 2, 3 and 4 on the horizon-
tal axis illustrate cognitive development stages as described by the developmental
psychology representing punctuated manner of increase in cognitive complexity.

3.4 Summary of the chapter

This chapter introduces and discusses the conceptual model of open-ended intelli-
gence and, on the one hand, provides a conductive and integrative perspective to
established theories, modes of thinking and their problematics introduced in Chap-
ter 2. On the other hand, the conceptual framework presented here serves as the
backbone for the computational model and architecture of open-ended decentral-
ized computing developed through Chapters 4 and 5.

82 Chapter 3. Open-ended intelligence

The nutshell explanation of the conceptual model is as follows. The process of
individuation of intelligence happens within a population of interacting primary ele-
ments or agents when patterns of interactions among them become more or less per-
sistent or stabilize. These patterns correspond to clusters or assemblages of different
levels of consolidation and can be loosely distinguished as preindividual, fluid individ-
ual and fully formed individual, in order of increasing consolidation. The emergence
of stable patterns is facilitated by the progressive process of signification of meaning
of signals being exchanged and the selection of mutually meaningful communica-
tions among agents in the population. All interesting observable manifestations of
real-world intelligence are fluid individuals, including humans, animals, plants and
fungi, albeit manifesting different consolidation degrees. Furthermore, fluid indi-
viduals, which are partially persistent assemblages of elements, are characterized
not only by structured interactions inside an assemblage, but also structured inter-
actions across the boundaries with other members of the population. These other
members together constitute the environment of the fluid individual. The structured
interaction of the now consolidated assemblage (an agent) with its environment is
explained as the movement in the metastability landscape, where the landscape is
itself influenced by this movement. This is the model of interaction between scales.
Moreover, since the metastability landscape itself is comprised of interacting ele-
ments, it is understood as an agent at a higher scale. All scales of assemblages and
their populations recursively interacting as agents with their environments consti-
tute the scalable model of individuation. Assemblages of agents are determined
via a history-dependent process where the interactivity of elements create patterns
which further influence the interactivity and in this way give rise to the mechanism
of progressive determination – the abstract mechanism of individuation of cognition
– where function determines structure and structure determines function. Impor-
tantly, the process of individuation is not directional and can lead to both integra-
tion and disintegration of patterns of communication and assemblages of agents.
The scheme of synthetic cognitive development conceptualizes the apparent stages of
human cognitive development as relatively stable periods of otherwise alternating
cycles of integration and disintegration of cognitive structures and patterns of ac-
tivity within a system. Notably, the notion of synthetic cognitive development is
not constrained by an observed number of cognitive development stages in humans
and considers cognitive development and individuation of cognition as a general
divergent phenomenon.

Chapters 4 and 5 utilize this conceptual framework in order to conceive the pro-
cess of individuation of cognition in computational terms and design a general soft-
ware architecture for the implementation of the simulation modelling engine. Note
that the conceptual model is not descriptive in the sense that it does not describe any
concrete manifestation of intelligence, but rather a framework capable of expressing
any form of intelligence. Likewise, the computational model and architecture devel-
oped in the following chapters is general as it conceives the computational expres-
sion of the scheme of synthetic cognitive development without limiting itself to any
concrete forms of intelligence, which are provided only as examples.

83

Chapter 4

Decentralized computing for
synthetic cognitive development

4.1 The power of computational metaphor

Chapter 1 showed how the thread that relates interdisciplinary aspects of the con-
ceptual framework, computational model, use-cases and simulation modelling ex-
periments in this work is the "mechanistic" perspective towards an intelligent com-
plex system. Computational thinking is a perfectly valid and the most befitting way
to actuate this perspective. Within the framework of open-ended intelligence, syn-
thetic cognitive development as a general phenomenon arising in complex systems
extends the concept of natural evolution (Weinbaum, 2018). The approach that all
that evolution – the ultimate process that creates order from disorder – does is to cre-
ate knowledge (see Section 2.2.1) asks for application of the best known conceptual
and technical tool for reasoning and implementing processes of information signi-
fication, creation, communication and actuation – the computational metaphor (Kelly,
1998):

Once nature was described as a body, then a clock in the age of clocks, then a machine
in the industrial age. [...] To explain how our minds work, or how evolution advances,
we apply the pattern of a very large software program processing bits of information.
None of these historical metaphors is wrong; they are just incomplete. Ditto for our
newest metaphor of information and computation. [.. it] can’t be the most complex
immaterial entity there is, just the most complex we’ve discovered so far. We might
eventually discover that exotropy1 involves quantum dynamics, or gravity, or even
quantum gravity. But for now, information (in the sense of structure) is a better anal-
ogy than anything else we know of for understanding the nature of exotropy (Kelly,
2010, p. 64).

The abstract mechanism of individuation of cognition, which is at the core of syn-
thetic cognitive development and open-ended intelligence, is the progressive deter-
mination of constraints (see Section 3.2.4). Approached from the perspective of the
computational metaphor it is precisely the mechanism of creation and propagation
of information in a decentralized system. Extending this parallel further, evolution

1Exotropy, the term first coined by Max More in 2003, denotes "an evolving framework of values and
standards for continuously improving the human condition". The technical equivalent of exotropy is
negative entropy.

84 Chapter 4. Decentralized computing for synthetic cognitive development

at large can be seen as myriad fuzzily localized progressive determination processes
branching to the interacting pathways of evolutionary development. These path-
ways in the case of biological evolution are then categorized as kingdoms, classes,
phylums, orders, families, species and finally individuals.

Cognitive development of an individual intelligent being is but a small sub-
process in the evolving network of life (see Section 2.2.1) yet following the same
principles and mechanism – progressive determination of constraints within a pop-
ulation of independent, heterogeneous and interacting processes. In this chapter
we formulate this process with the help of the computational metaphor in terms of
open-ended decentralized computing.

4.2 Through the lens of computation

The artificial intelligence programme has gained much of its creative momentum
over the years from the tensions between understanding and modelling intelligent
behaviour in terms of the number of interdisciplinary ideas, including (1) sub-sym-
bolic versus symbolic representation and processing, (2) deterministic versus non-deter-
ministic computation, (3) symbol grounding, (4) notions of selective versus descriptive
information and more. Each of these paradigms consists of a complex set of as-
sumptions, premises and techniques which are often shared up to the point where
the difference between paradigms themselves becomes fuzzy. Moreover, thinking in
terms of a single paradigm is not sufficient for covering all (or even most) interesting
aspects of machine intelligence as well as its "natural" counterpart. We discuss here
these paradigms briefly in the light of computational metaphor and its relation to
open-ended intelligence.

4.2.1 Symbolic versus sub-symbolic

The idea of symbolic processing rests on the premise that all computation is a syntac-
tic manipulation of symbols, and therefore any behaviour can be described and mod-
elled by (a) defining a correct set of symbols (i.e. entities) (b) defining correct rules of
symbol manipulation (i.e processes). An implicit and sometimes taken for granted
assumption within the symbolic paradigm is that symbols and rules are singularly
related to clearly defined meanings which are known to be true to humans (program-
mers, philosophers, mathematicians) and therefore can and should be translated into
symbolic systems in order for them to exhibit intelligent behaviour.

A way to see how sub-symbolic differs from symbolic is to try to see what pro-
cesses do not fit under the above definition. In terms of the first part of the definition
regarding symbols and rules of manipulation, the sub-symbolic paradigm complies
as well, especially considering our computational perspective: since it can be imple-
mented in a computational medium it is surely a manipulation of symbols, albeit
something that does not make much sense to humans – zeros and ones. So the dif-
ference seems to be not in whether manipulation of symbols is taking place via the
rules, but rather what kind of symbols, what kind of rules and, most importantly,
how their so called "meaning" is being encoded and manifested. It is obvious that
for moving forward we will have to discuss the concept of a symbol and how sym-
bols acquire "meaning" by being grounded in "reality" – the symbol grounding problem
of artificial intelligence (Harnad, 1990).

4.2. Through the lens of computation 85

A good start is Luc Steels’ observation that the concept of symbol is used in two
distinct ways: as a c-symbol of computer science and m-symbol of meaning-oriented
symbols in the tradition of the arts, humanities, social and cognitive sciences (Steels,
2008, p. 8). Many of the perceived and debated problematics concerning differences
between symbolic and sub-symbolic representations and processing seems to be re-
lated to confusion between these two usages of the concept. The formulation of a
similar distinction by Carl Gustav Jung is helpful in shedding some light: a sign is
a reference to something known; a symbol is a figure by which allusion is made to
an unknown (Campbell, 1958). C-symbols of science, symbolic logic and computer
science are signs. The takeaway is that signs are always unambiguously defined in
a context-free manner and, consequently, the rules of the sign manipulation ("sym-
bolic processing") are always well defined within a given theory, system or program-
ming language. On the other hand, symbols may mean many things depending on
the context of their usage and appearance. The rules of such symbol manipulation
are not really defined as rules, since relations between symbols are mostly associa-
tive and highly context-dependent. In short, signs and rules are (or at least can
be) unambiguously defined and correspond to being so called "symbolic", whereas
symbols and associations are ambiguous by nature and are so called "sub-symbolic".
It is surprising how labelling and categorization can sometimes make things more
obscure.

The fundamental unsolved problem within the programme of artificial intel-
ligence is how symbolic and sub-symbolic paradigms can coalesce. It has been
demonstrated that the assumption of clear correspondence between sub-symbolic
and symbolic representations does not hold. Interaction among symbolic and sub-
symbolic representations and processing in intelligent systems is intricate and fluid
(Heylighen and Gontier, 2019), much more than could be expressed via a strict sys-
tem of rules. Understanding and modelling them should necessary involve the as-
pect of emergence and "meaningful" signification of information (see Section 3.2.1).
Implementation of such emergence has to be supported by certain forms of embod-
iment and their interactions – an avenue that has been pursued by Steels (2015).

4.2.2 ’Selective’ and ’descriptive’ information

The Jungian distinction of sign as denoting something known and symbol as de-
noting something unknown provides yet another entry point for asking "what is
information?" in the light of the Simondonian extension of Shannon’s mathematical
theory of communication. MacKay (1969) propounds that two kinds of information
can be distinguished on the basis of how information content is measured or at least
grasped – selective information-content and descriptive information-content.

Selective information-content is used in mostly technical situations where informa-
tion can be defined in terms of the answer to a question – and hence reduce the
uncertainty expressed by that question. Precisely this kind of information is used
in Shannon’s mathematical communication theory. Selective information-content is
that which allows us "to make a selection from a set of possibilities or to narrow the
range of possibilities about which we are ignorant. [...] The selective information-
content of a message, or of the result of a scientific experiment, for example, has to
do with the number of independent choices between two possibilities which it en-
ables us to make – the number of independent yes’s or no’s to which it is equivalent"
MacKay (ibid., p. 11). More generally, selective information-content is related to the

86 Chapter 4. Decentralized computing for synthetic cognitive development

statistical concept of probability – the probability of selecting a value from a known
distribution (Carnap, 1955).

Descriptive information-content refers to a different situation, in which information
is not related to selecting an answer from the list of possibilities, but to describing an
unknown situation in the first place. "The apparatus which gives us most descriptive
information, in this new sense of the term, will be that which yields the largest num-
ber of bricks (metaphorically speaking) for our symbolic picture, or which enables us
to show the maximum amount of fine structure in it" MacKay (1969, p. 11). The re-
lation between selective and descriptive is somewhat similar to the relation between
selecting an item from an existing probability distribution and constructing the prob-
ability distribution in the first place. The former is "closed-ended" because it reduces
possibilities and uncertainty, the latter is "open-ended" because it explores possibili-
ties of descriptions and structures. Descriptive information-content is related to the
concept of inductive probability, which refers to the probability of a hypothesis with
respect to the body of knowledge given the additional body of evidence (Carnap,
1955).

An intelligent agent devising a model of complex environment necessarily em-
ploys a combination of processes utilizing both selective and descriptive information-
content. Furthermore, due to limited resources of time and memory, operation in a
real-world environment presents situations which require relevant information to be
selected from an effectively unknown distribution – as explained by the selection for
relevance aspect of model building (see page 25).

4.2.3 Deterministic versus non-deterministic computation

The tension between symbolic and sub-symbolic representation and processing para-
digms has been well manifested through the sixty-year-old history of artificial intel-
ligence. Not so with relation to deterministic and non-deterministic behaviour and
computation, at least in a direct manner. Both terms are well defined: determinism is
expressed in terms of an abstract process which given the same input produces the
same output no matter how many times repeated, while non-determinism may pro-
duce any output or none at all. Rational, scientific and everyday thinking is heavily
biased towards determinism, which allows one to reason about causes, effects, goals
and how to reach them. However, deterministic and non-deterministic behaviour
are only extremes of a continuum of probabilistic behaviours of complex systems
that can be expressed by different shapes of probability distribution of outputs given
the same input (see Figure 4.1). These behaviours may involve many causes of the
same phenomenon, different phenomena caused by a single cause and many inter-
acting causes leading to many phenomena – see the distinction between "preforma-
tionist", "interactionist" and "constructivist interactionst" perspectives in Figure 3.1
. The prevailing bias towards deterministic, asymptotic and goal-directed thinking
introduces a powerful filter which selects only a small sub-set of behaviours, phe-
nomena, computational processes and descriptions from the environment and the
world.

4.2. Through the lens of computation 87

FIGURE 4.1: The continuum of probabilistic behaviours with deter-
ministic and non-deterministic as extremes. Stylized probability dis-
tributions illustrate probabilities of an observation given the same in-
put into the process representing a behaviour. Note that the illustra-

tion is provided for didactic purposes without claim for accuracy.

Informally, non-determinism, which is the left-most extreme of the continuum,
can be understood as a uniform probability to receive any output from the behavioural
or computational process, while determinism, which is the right-most extreme, a
single well defined output. Probabilistic behaviour is then anything that can be ob-
served between these two extremes. What is important is that the continuum as well
as its extremes are not symmetric – something that gets obscured by the fact that non-
determinism linguistically is the negation of determinism. Yet if non-deterministic
behaviour can produce any output, it also can produce outputs that are explainable
by deterministic behaviour. Therefore, deterministic behaviour is a special case of non-
deterministic behaviour and, consequently, non-determinism is more fundamental than its
"positive" counterpart, as illustrated by arrows in Figure 4.1.

Formal understanding of the space of behaviours and their properties within
this continuum is studied by the theory of computability, which tirelessly ponders
the question "what is computable in principle?" (Immerman, 2016). Computational
complexity theory2 has evolved from computability theory by restricting the notion
of computable to computable efficiently (Kolokolova, 2017) within bounded time and
space. Computability properties of processes are estimated by classifying them into
computational complexity classes which correspond to known abstract models of
computation, and many of them can be characterized by an appropriately restricted
Turing machine (Vitanyi, 2009). This has positioned the Turing (1937) model of com-
putation at the core of computational complexity theory and, consequently, the core
of computational thinking and metaphor.

Not surprisingly, the Turing machine and Turing completeness are often consid-
ered concepts that define computation itself in a sense that any process that could
be considered an "effective computation" is expressible in terms of a Turing machine
(Stannett, 2004). The computational metaphor, penetrating and greatly influencing
scientific and naive thinking since the first half of the 20th century, got shaped into
pancomputationism – a perspective that all processes (in physics, evolution, biology,
life and cognition) are algorithmic (Piccinini, 2015). This perspective itself became
simultaneously a locus of a heated debate and a point of departure for different the-
ories and ways of thinking. In the computer science community the debate revolves
around the questions "what is computation?", "what is effectively computable?",
"what is physically computable?", alternative interpretations of the Church-Turing
thesis, the possibility and construction of formal and physical computational mod-
els that are more powerful or expressive than Turing’s model (Nayebi, 2014). In the
areas beyond theoretical computer science (notably in cognitive science, philosophy
of mind and AI, complexity science) the debate influences perceptions of power and

2Not to be confused with complexity science of Section 2.2.4

88 Chapter 4. Decentralized computing for synthetic cognitive development

limits of the computational metaphor for understanding complex and chaotic sys-
tems, natural phenomena and intelligence3.

There is also a deeper level beyond this debate, very much related to the em-
phasis and desire of predictability of the world, thinking in terms of asymptotic
processes as well as the desire to contain them in a goal-oriented manner. Goal-
oriented and deterministic thinking both empowers and constrains. It would not be
a great overstatement to say that it has enabled the realization of most of the tech-
nological advancements and creations of human civilization in terms of tools’ and
systems’ engineering. Yet its constraints come to the surface when this thinking is
applied to understanding, modelling of or interacting with complex adaptive sys-
tems which are by definition chaotic and unpredictable (see Section 2.2.4). Interest-
ingly, the association of the computational metaphor and determinism may in part
be an "unfortunate consequence" (very much like the one of Shannon’s mathematical
communication theory discussed in Section 3.2.1) of enormous impact of the early
work of Turing (1937), overshadowing the later ideas of Turing (1948) which were
not published for over 20 years due to being considered not suitable for publication
by contemporaries (Eberbach, Goldin, and Wegner, 2004).

The classical notion of Turing computation is tightly related to the notion of de-
cidability and the halting problem. Actually, the paper that established the concept of
the Turing machine (Turing, 1937) specifically addressed Hilbert’s Entscheidungsprob-
lem – along with Church (1936a,b) and Gödel (1931). This problem required "to de-
vise a process according to which it can be determined by a finite number of op-
erations whether the equation is solvable in rational integers". The Turing (1937)
machine is a mechanical device that takes as input the calculable function together
with its parameters and tries to solve it. If the function is solved, then the machine
halts and outputs the solution; otherwise it works forever. Turing showed that there
is no procedure that can discriminate between functions that are unsolvable and
the ones that take an exponential amount of time to compute and that the Entschei-
dungsproblem is not solvable in principle – without running the actual computation.
Observe that the very formulation of the halting problem defines determinism and
its relation to finite resources of time and space – the issues of efficiency of computa-
tion. But the somewhat prevailing perspective that computation is only the process
that eventually produces results (i.e. halts) and is the only useful computation, re-
lates more to the "desire for predictability of the world" than any formal results of
computer science or logic.

Models of computation that can compute more than the universal Turing ma-
chine of 1937 started to be explored not long after, including, e.g. oracle machines
(Turing, 1938) and unorganized machines (Turing, 1948). This line of research was
revived mostly at the end of the 20th century under the umbrella of hypercomputation
or the super-Turing computation movement within the computer science community
(Copeland and Proudfoot, 1999; Nayebi, 2014). The concept of hypercomputation
refers to the "possibility that a physical or conceptual machine might be able to per-
form non-recursive computations, therefore stepping outside limits on computabil-
ity suggested by the Church-Turing thesis" (Stannett, 2004). Besides producing many
alternative computational models, the intensified research of the limits of computa-
tion first and foremost contributed to crystallization and better understanding of the
question "what is computation".

3Francis Heylighen (2016), private conversations

4.2. Through the lens of computation 89

Piccinini (2011) observes that the original Church-Turing thesis involves the in-
tuitive description of "efficient calculability" and offers a notion of usability constraint
as well as a refined interpretation of the thesis. This interpretation is useful for
grasping borderlines between conceptual, mathematical, physically realizable no-
tions and models of computation as well as their classical and "hyper" aspects. Most
importantly, it provides a stepping stone for describing the computational model of
progressive determination, which is the goal of this chapter.

4.2.4 Closed computing

Piccinini (ibid.) provides a revised interpretation of intuitive aspects of the Church-
Turing thesis by first distinguishing its mathematical aspect, which is the thesis sup-
ported by the original arguments, and physical aspect, which pertains to the compu-
tational limitations of physical processes. He further granulates the physical aspect
into bold and modest versions, which result in the following categorization of the
Church-Turing thesis:

Mathematical : any function that is computable by following an effective procedure
is Turing-computable.

Bold Physical : any physical process is Turing-computable. This is a concise formu-
lation of pancomputationalism – the thesis that everything is a computational
process (Piccinini, 2017).

Modest Physical : any function that is physically computable is Turing computable.

Further constraints on physical computation which distinguish useful computa-
tion from all the rest (note immediately the relation to goal-directed and determinis-
tic mode of thinking encoded into the word "useful") are defined:

• Usability constraint: if a physical process is a computation, it can be used by
a finite observer to obtain the desired values of a function. The sub-constraints
of the usability constraint, as summarized by Nayebi (2014) are:

i. Readable Inputs and Outputs: The inputs and outputs of a computation
must be readable, in the sense that they can be measured to the desired
degree of approximation. For example, having an infinite precision real
number for the input and/or output would not be permitted. For an out-
put to be readable in the intended sense, the computing system must have
a recognizable halting state.

ii. Process-Independent Rule: In a genuine computation, the problem be-
ing solved (equivalently, the function being computed) must be definable
independent of the process of solving it (or equivalently, computing it).

iii. Repeatability: For a physical process to be a genuine computation, it
must be repeatable by any competent finite observer who intends to ob-
tain its results, in the sense that the same sequence of states can occur
either within the same physical system at different times or within two
relevantly similar physical systems (e.g. two systems satisfying the same
equations).

iv. Settability: An ordinary computing system can compute any value of one
or more functions, within its limits (e.g. a universal machine can compute
the value of any computable function until it runs out of memory or time).

90 Chapter 4. Decentralized computing for synthetic cognitive development

Moreover, a system must be settable, namely, a user can choose which
value of the function is going to be generated in a given case.

v. Physical Constructibility: If a system cannot be physically constructed,
it may count as performing notional computations, which are irrelevant
for physical purposes.

vi. Reliability: While the requirement that machines should never break
down is unrealistic, it is a requirement that machines be reliable in the
sense that they completely operate correctly long enough to yield correct
results at least some of the time. A machine that never completes its com-
putation successfully is certainly not worth building.

The above, called a modest physical Church-Turing thesis, very precisely de-
fine strictly deterministic processes or what we would call closed computing. Conse-
quently, all computation that satisfies these constraints is strictly deterministic while
all that does not satisfy them lies somewhere on the right in the continuum of Figure
4.1. The equivalently constrained processes are also called algorithmic computation:

[..] computation that is performed in a closed-box fashion, transforming a finite input,
determined at the start of the computation, to a finite output, available at the end of
the computation, in a finite amount of time (Eberbach, Goldin, and Wegner, 2004).

4.2.5 Open computing

The requirements for expressing progressive determination are almost orthogonal
to closed computing as defined in Section 4.2.4:

i. the readability of inputs and outputs is determined during the process and not
a priori, which violates the usability constraint of readable inputs and outputs;

ii. the function being performed by the process is defined during the process and
not before, which violates the process-independent rule;

iii. progressive determination is context dependent, non-deterministic and non-
directional, and therefore clearly cannot be expressed by computation that sat-
isfies the repeatability constraint;

iv. since progressive determination is divergent rather than convergent and the
function being computed is determined during the process, it obviously vio-
lates the settability constraint;

v. the only usability constraint that synthetic cognitive development fully satis-
fies is the physical constructibility constraint and that is by definition – syn-
thetic cognitive development is the physically implementable computational
process simulating the abstract process of progressive determination (see Sec-
tion 3.2.4);

vi. since synthetic cognitive development and progressive determination are non-
deterministic, their "success" or "failure" are poorly defined notions – therefore
they cannot satisfy the reliability constraint of usability, as it is formulated by
Piccinini (2011). Yet, it does not mean that the process can "break down", be
"unrealistic" or does not require distinguishing between errors and features in
its computational implementation.

4.2. Through the lens of computation 91

Luckily, as discussed in Section 4.2.3, the deterministic and closed computing
models are not limits of computation, neither in a theoretical nor practical sense. Tur-
ing (1937) had already defined choice machines or "c-machines" which interact with
humans or other machines (albeit he did not develop the concept in detail). Turing
(1948) defined unorganized machines which are largely random in their construc-
tion and structure yet have a defining property of being able to become organized into
universal machines via learning, evolution or reinforcement learning. These were
predecessors of the contemporary paradigm of interactive computation which features
computing models that allow for changing specification of the machine and adding
additional information to initial input during the computation process (Goldin and
Wegner, 2006; Milner, 1993a).

Unorganized machines

Turing (1948) observes that the argument of the incompleteness theorem and Church-
Turing thesis (Church, 1936b; Gödel, 1931; Turing, 1937) rests on the condition that
a machine should not make mistakes, but this requirement is not realistic for a real-
world intelligence. Then Turing (1948) describes logic computing machines, prac-
tical computing machines, their universal versions, paper machines and partially
random machines just to arrive at the concept of the unorganized machine. As the
name suggests, an unorganized machine is a computing engine that does not have a
systematic structure at design and is largely random in its construction.

The machine is made up of a large number of similar units connected via inputs
and outputs. An example of such unit could be AND or NAND gate, yet in gen-
eral they can be made to perform any arbitrarily chosen operation (see Figure 4.2).
Connections that relate inputs and outputs can be:

A) fixed from the beginning randomly (see Figure 4.2A),

B) same as A) plus the ability to arbitrarily "choose" to perform NOT operation
on the signal passing through (see Figure 4.2B),

C) same as B), except that the "choice" is not random but modulated by external
signals (see Figure 4.2C)

The most important property of unorganized machines is that they "have config-
urations such that once that configuration is reached, and if the interference there-
after is appropriately restricted, the machine behaves as one organized for some def-
inite purpose" (ibid.). They can be called "meta-universal" due to holding a poten-
tial to be turned into the configuration of a universal machine as defined by Turing
(1937). Therefore, it is not the initial or immediate configuration that is important,
but the very process of organizing the unorganized machinery during which unorga-
nized becomes organized.

The concept of unorganized machines and the process of their organization were
forgotten and later independently rediscovered as neural networks, evolutionary
computing and reinforcement learning (Eberbach, Goldin, and Wegner, 2004). In-
terestingly, at the end of his report Turing (1948) discusses briefly two aspects of
educating machinery for organizing the unorganized: discipline and initiative. Rein-
forcement learning, or the then so called "pleasure-pain system" is a form of strict
discipline which amounts to rewarding for good behaviours and punishing for bad

92 Chapter 4. Decentralized computing for synthetic cognitive development

(1) Unorganized machine with randomly chosen structure, where can take
three different forms:

(A) Connectors of A-type un-
organized machine passing the

unchanged signal (B) Connectors of B-type unor-
ganized machine able to arbi-
trary flip the signal (or turn it

off)

(C) Connectors of C-type un-
organized machine where the
"choice" of flipping is modu-

lated by external signals

FIGURE 4.2: Types of unorganized machine and its connectors. All
pictures adapted from Turing (1948) by rearranging for a concise rep-

resentation.

behaviours as deemed proper by creators and educators of a machine. "But dis-
cipline is certainly not enough to produce intelligence. That which is required in
addition we call initiative. This statement will have to serve as a definition. Our task
is to discover the nature of this residue as it occurs in man, and to try and copy it
in machines" (Turing, 1948, p. 25(125)). Two methods of inoculating the initiative
into a machine are given, both of which considered legitimate: (1) designing or pre–
training a fully "disciplined" machine and then "grafting in" the initiative by progres-
sively relaxing machine’s constraints or (2) starting with a completely unorganized
machine without designed constraints and trying to bring into it both "discipline"
and "initiative" progressively, yet simultaneously.

The history of the artificial intelligence research programme has clearly demon-
strated in many different ways through trial, failure, "summers" and "winters" that
no matter how precisely rules of behaviour are encoded into an engine, however
complex the learning algorithm is or however well the training set is crafted to cover
all examples, something – the component of "initiative", "choice" or context depen-
dency – is missing and that makes learning machines fail miserably where humans
or animals excel without effort from a very young age. Remarkably, most of AI
architectures and approaches developed through its history unmistakeably follow
the first method "of inoculating the initiative" and almost none follow the second,
neither conceptually nor implementation-wise.

Conceptually, the two methods of introducing initiative into a machine can be ap-
proached through the freedom and constraint principle (see Section 2.1.5), by replacing
"discipline" with "constraint" or "goal-directedness" and "initiative" with "freedom"
or "open-endedness". The predominant way of thinking about intelligence and, sub-
sequently, AI and its implementations is constraint-based: it starts by pre-defining

4.2. Through the lens of computation 93

the goals and behaviours with which intelligence should keep in line. These con-
straints are relaxed only after observing that they are not enough to produce intel-
ligence and even then are still for the sole purpose of achieving pre-defined goals
in the first place. Open-ended decentralized computing takes the opposite path – it
starts from the unconstrained ("unorganized") machine and via the process of pro-
gressive determination of constraints reaches behaviours that are complex, intelli-
gent and observably useful.

(A) Continuum of AI research perspectives

(B) Continuum of probabilistic behaviours (copied from Figure 4.1)

FIGURE 4.3: Relation between freedom and constraint continuum of
Section 2.1.5 (page 10) and non-determinism and determinism con-
tinuum of Figure 4.1 (page 87). The continuum between "discipline"
and "initiative" can be visualized along the same axis. Constrained

behaviour is a special case of unconstrained free behaviour.

I believe that the second method of organizing the unorganized is superior even
if one takes into account only a cold technical perspective towards AI architecture
design. Recall that freedom and non-deterministic behaviours are more general than
constrained and deterministic behaviours. Moreover, we do not know what intelli-
gence is or what constraints define it. Therefore, it makes perfect sense to design
a constraint-free architecture that is able to take different constraints as parameters
rather than designing specific architecture for every hypothetical constraint that is
deemed to be important to intelligent behaviour. Metaphorically speaking, the ratio-
nale of designing a computational framework and architecture without positing any
constraints is not much different from the rationale of designing a universal (Tur-
ing) machine rather than every specific computing engine. Moreover, it seems the
unavoidable design choice for an architecture that can change and self-modify its
computation processes and configuration as well as using intermediate results for
determining further processes.

The image of the unorganized machine of Turing (ibid.) clearly follows the net-
work paradigm (see Section 2.2.4) by allowing elementary computation units to con-
nect via configurable connectors and organizing network structure in this way. A
modern computational paradigm following the same principles is interactive compu-
tation.

Interactive computation

Interactive computation (Dina Goldin, 2006; Milner, 1993a; Wegner, 1998) extends
Turing (1937) machines by adding dynamic input and output (read and write) ac-
tions that interact directly with an external environment which may be composed of

94 Chapter 4. Decentralized computing for synthetic cognitive development

other interaction machines. It can handle inputs and actions occurring during com-
putation additionally to the input that is defined before computation starts, in this
way providing history-dependent results and services.

The model of interactive computation is arguably super-Turing and the only
physically realizable hyper-computation model (Nayebi, 2014). Formal models of
interactive computation include the communicating sequential processes (CSP) of
Hoare (1978), the process calculus (π-calculus) of Milner (1993b), the actor model of
Hewitt, Bishop, and Steiger (1973), the cost-calculus ($-calculus) of Eberbach (2000)
and more. These models have been developed at least partially in order to account
for the need to reason about parallel and concurrent computing, for which the re-
finement of sequential computing paradigm was not sufficient (Milner, 1993a).

By the 1970s it was already realized that classical Turing machines do not account
for all problem solving, but devising a complete model of computation that includes
interaction was not attempted until the 1990s (Goldin and Wegner, 2006). While
the interactive view of computation is widely accepted by many programmers and
realized in software development frameworks, such as actor framework, reactive
programming and event-driven service-oriented architectures4, it is disputed by ad-
herents of the classical Turing machine model who regard interaction, super-Turing
computation or hyper-computation at best an unproven and unnecessary paradigm
shift (Davis, 2004).

For the purposes of this work it is enough to admit the superior expressibility
and practicality of some super-Turing computation models and their implementa-
tions, such as interactive computation. But it is still interesting to note the concep-
tual aspect of the debate on the possibility of computational models extending that
of Turing (1937). Referring to the Gödel (1931) incompleteness theorem, Goldin and
Wegner (2002) show that interactive and empirical computation are incomplete be-
cause they have too many variables following chaotic dynamics to be expressible
as theorems of a sound and complete logic. They further suggest that interactive
computation can be formalized in paraconsistent, i.e. inconsistency-tolerant, logic.
Turing’s 1937 machine was conceived to be intentionally formalizable and consis-
tent in order to solve the halting problem in mathematics. It seems therefore that
the debate of hyper-computation again revolves around deterministic versus non-
deterministic and a "desire for predictability of the world" and involves a kind of
"Gödelean choice" between incomplete and inconsistent.

4.3 Conundrum of decentralization

Decentralization in its most basic definition means the process of transfer of authority
from central to local government5 and is historically mostly related to social gover-
nance. The concept has been applied in management (e.g. decentralized organiza-
tion structures), political science and ideology (e.g. liberal social decentralization,
anarchy), economics (e.g. free market), computing and technology (e.g. internet,

4 (1) CAF_C++ Actor Framework (2) Implementation of actor model on the Java VM (3) Actor
framework for Rust programming language (4) Cross-platform Actor framework (5) Asynchronous
programming with observable streams (6) Event-driven SOA

5https://en.oxforddictionaries.com/definition/decentralization

https://actor-framework.org/
https://akka.io/
https://github.com/actix/actix
https://github.com/actix/actix
http://proto.actor/
http://reactivex.io/
http://reactivex.io/
https://en.wikipedia.org/wiki/Event-driven_SOA
https://en.oxforddictionaries.com/definition/decentralization

4.3. Conundrum of decentralization 95

blockchain) and much more. Due to the many domains of usage, the term has ob-
tained so many different meanings and connotations that it has become uncomfort-
ably vague and poorly defined, especially in the socio-technological domain (Bu-
terin, 2017). Yet, despite their broad usage, concepts of centralization, distributed-
ness and decentralization are general systemic properties. We will now attempt to
provide system-theoretical treatment of the decentralization concept with the pur-
pose of clarifying its role in the computational model.

First, centralization and decentralization are aspects of the topological config-
uration or structure of a system and are best approached from the perspective of
network science (see Section 2.2.4), which allows the structure and dynamics of sys-
tems to be abstracted from their immediate domain (see Figure 4.4). This way it is
possible to describe a system in terms of nodes (denoting objects of the system) and
links (relations between objects). Note that links can represent any dynamic or static
relations – control, information flows, friendship, etc.

(A) Continuum of de-centralization

(B) Centralized, decentralized and distributed
networks. Adapted from Baran (1962, 1964)

(C) Relations among centralized, decentralized
and distributed. Adapted from MaidSafe (2015)

FIGURE 4.4: Defining the continuum between centralization and decen-
tralization in terms of network structures.

The language of network science allows the notions of centralization, decentral-
ization and distributed-ness to be defined more clearly. Note, however, that histor-
ically the usage of some of these terms has been inconsistent (see e.g. the different
signification of "decentralized" and "distributed" in Figure 4.4) and therefore our
definitions are driven by conceptual clarity of intended usage rather than historical
usage (Figure 4.4c):

• a system is centralized when one "central" node or actor is directly linked to
all other nodes. Formally, given a network of N nodes, there exists only one
node in a network with degree equal toN−1 where multiple links to the same
node are counted as one;

• a system is distributed when there is one "central" node from which all other
nodes are reachable (i.e. a path through other nodes exists), yet they are not
necessarily directly connected;

96 Chapter 4. Decentralized computing for synthetic cognitive development

• in a decentralized system there is no single central node, but a few, which
provide shorter direct or indirect paths for different sub-networks of the whole
network;

• a peer-to-peer system is where all nodes have the same degree – in either a
fully or sparsely connected network6.

A few notes are in place here. First and obviously, mapping these concepts to
well defined network structures allows one to reason about properties of a system
as well as providing sound measures for estimating them. Second, most of these
structures and concepts do not exist in their pure form since real-world graphs al-
ways exhibit some combination of them (see Figure 4.4a). Third, a network is a
model of a real system, and therefore links between nodes represent arbitrarily cho-
sen aspects of relations between them. Which particular types of relation are chosen
is the subject of the selection for relevance aspect of model building (see page 25). Re-
call, however, that there exist network and graph formalisms which allow different
relation types to be represented in the same graph (see page 36). A so called multi-
labelled network representation of a system may be centralized with respect to some
types of relation and peer-to-peer with respect to others. This is often the source of
confusion when using a single term to describe real world systems without naming
the aspect of analysis – see Box 4.1 for a blockchain related example.

Box 4.1: Distributed consensus and decentralized aspects of blockchain
technology

Blockchain is the data structure of a growing list of records composed
into blocks which are cryptographically linked ("chained") to each other in a
manner that defines total order between them, developed by Haber and Stor-
netta (1991). The first conceptualization and implementation of blockchain
by Nakamoto (2008) featured an important addition of a model which does
not require an exogenous trusted party, but is used to achieve an eventually
consistent state of the data structure without a centralized mechanism. This
conceptualization provided a practical solution to the fundamental Byzantine
Generals’ Problem in computer science and, particularly, distributed comput-
ing systems (Lamport, Shostak, and Pease, 1982). The problem is formulated
in the context of generals at different camps outside the enemy castle decid-
ing whether to lead their armies to an attack. The attack can be successful
only if all armies act in a coordinated manner. Generals have no other way
to communicate except by sending messengers through enemy territory. Both
messengers and commanders of the armies can be traitors and there is no way
to know it – there is no "omniscient" entity or a party whose trust is externally
established. The problem of successful coordination of actions in this setting
solves the distributed consensus problem.

The Bitcoin blockchain of Nakamoto (2008) as well as some other imple-
mentations, including Ethereuma cannot be unambiguously described as de-
centralized or centralized from a systemic perspective, since they combine
both, depending on which type of relationship is considered:

• they are centralized if we model nodes as units of information and links

6Equivalent definitions can be used for discrete or weighted links between nodes.

4.3. Conundrum of decentralization 97

as exchange of information – since there is a single global data structure
which is accessed by everybody in the network;

• they are decentralized if nodes represent individuals and organizations
controlling computing resources of the network;

• finally, in terms of distribution of physical machines and the probability
of their fault, blockchain systems can be peer-to-peer.

The above listed aspects were named logical, political and architectural de-
centralization by Buterin (2017) and are characteristic of blockchain technol-
ogy. Yet the principle is generalizable to any system with an arbitrary number
of aspects of analysis. The overall dynamics and properties of a system would
depend on actual configuration along these dimensions as well as their inter-
action. Design, maintenance and governance of these configurations are the
subject of what we call decentralized IT governance.

aEthereum White paper: A Next-Generation Smart Contract and Decentralized Application
Platform.

Apart from being based on blockchain technology, Ethereum is the first system
constituting a so called "smart contract and decentralized application platform", es-
sentially running a single virtual machine on a decentralized network of computers
able to perform Turing complete computation by maintaining the eventually consis-
tent global state and history of its operations. By greatly simplifying and abstracting
from details, the platform is conceptually modelled after the deterministic model
of Turing (1937). For connecting the platform to the real world the notion of ora-
cles are used – which, just as in the modified Turing (1938) model, allow for non-
deterministic inputs into otherwise deterministic computation.

This hints at a relation between non-determinism and decentralization, which
does not finish here. First note that any finite computation or a program can be ex-
pressed as a directed graph with atomic processes as nodes and transitions between
them as links (Allamanis, Brockschmidt, and Khademi, 2018; Emde Boas, 2012; Go-
ertzel, Pennachin, and Geisweiller, 2014; Rodriguez, 2010; Turchin, 1986; Turing,
1948). A computation graph is a structure where nodes represent atomic computa-
tion units and links – both control and data flows between them. A deterministic
computation can then be represented as a simple graph where each process node
has only one outgoing link to the next process node (Figure 4.5a). Likewise, a non-
deterministic computation is a simple graph where a process node can have more
than one outgoing link where each link is "chosen" at runtime by the control flow in
probabilistic manner (Figure 4.5b). Further, a non-halting deterministic computation
can be expressed as a graph with a cycle which is unfolded to a simple graph when
the computation is stopped and the number of times the control flow of computation
has taken the cyclic path is known (Figure 4.5c).

Figure 4.5 illustrates that a finite non-deterministic computation can be reduced
to deterministic by pruning away links representing control flow in order for each
process node to have only one outgoing link. Alternatively, a deterministic process
can be represented in a non-deterministic computation graph if the process is made
to know a priori which outgoing links it will take at each node. In other words, a
deterministic computing graph is a reduction of a non-deterministic computing graph and
clearly the former is a special case of the latter. Therefore, it is possible to achieve a

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

98 Chapter 4. Decentralized computing for synthetic cognitive development

(A) Deterministic Turing machine graph. Adapted
from Laud, 2011.

(B) Non-deterministic Turing machine graph.
Adapted from Laud, 2011.

(C) The graph of an arbitrary trivial function (x+ y)×
∏∞

i=1 z. The geometric
progression is represented by the dashed line in the graph on the left, but when i is

known (i.e. the computation is finite), it can be "unfolded" to a graph on the right. In a
general case the computation may never end, but intermediate results can be read out

after an arbitrary number of steps or time units.

FIGURE 4.5: Representing Turing machines as graphs.

deterministic computation from a non-deterministic by imposing a global perspec-
tive on every computation process represented in a graph. This is precisely the re-
lation between decentralization and non-determinism: a deterministic computation is
necessarily centralized by the existence of a global observer having control over all and ev-
ery elementary computation process in terms of their relations to the overall computation
graph. Conceptually, non-determinism reflects uncertainty and disorder from the
perspective of a global observer, while determinism – certainty and order. Order is
progressively achieved from disorder by breaking a symmetry of uniform transition
probabilities among elementary processes in a systematic way. In the language of
computer science:

Distributed [decentralized] computing arises when one has to solve a problem in
terms of distributed entities (usually called processors, nodes, processes, actors, agents,
sensors, peers, etc.) such that each entity has only a partial knowledge of the many
parameters involved in the problem that has to be solved. While parallel computing
and real-time computing can be characterized, respectively, by the terms efficiency and
on-time computing, distributed [decentralized] computing can be characterized by the
term uncertainty (Raynal, 2013)7.

Table 4.1 illustrates relationships between computing systems, computational
models, programming paradigms and execution mechanisms from the (de)centralization
perspective. Centralized systems are based on the worldview with an omniscient
observer, require deterministic or probabilistic computing, sequential or parallel
programming paradigms, synchronous execution and can be explained by the Tur-
ing (1937) computation model. Decentralized systems, on the other hand, encom-
pass a worldvew without the omniscient observer, indeterministic computation, dis-
tributed programming paradigm, asynchronous execution and can be explained by
the model of interactive computation.

7Text in brackets added by me to account for ambiguity of terms "distributed" and "decentralized",
as explained in Figure 4.4

4.4. Consensus and synchronization 99

TABLE 4.1: Centralization, distributed-ness and decentralization
mapped to systemic perspectives and aspects of computing. Note

the fuzzy boundaries between the concepts and their properties.

4.4 Consensus and synchronization

Synthetic cognitive development (see Section 3.3.3) is fuelled by the emerging func-
tional coordination of interacting agents in the forms of synchronization, coherence
and compatibility. Functional coordination, emergent or designed, allows for in-
teracting actors to structure their internal processes and information exchanges be-
tween them in time and space in order to achieve higher levels of synergy (Hey-
lighen, 2013). In the context of computer science and decentralized systems, func-
tional coordination is reflected by the problem of distributed consensus (see Box 4.1)
and emerging network structures – i.e. "organizing the unorganized".

Recall that in the context of open-ended intelligence progressive determination
of constraints, assemblages and boundary formation are described in terms of a pop-
ulation of initially independent interacting heterogeneous agents (see Section 2.1.6
and Figures 3.12, 3.4 or 3.5). This context is analogous to the one of decentralized
computation where computation is achieved via synchronization of independent
elementary processes. Therefore the computational aspect of progressive determi-
nation of constraints and synthetic cognitive development is tightly related to the
research of distributed consensus in computer science. Notwithstanding, there is
one important differentiating aspect of the conceptual and computational perspec-
tives: in computer science the "fuzzy" consensus is usually not considered or even
allowed, while conceptually, perfect coordination and complete determinism is an
exceptional case of human engineered systems.

This relation between conceptual and computational perspectives gives rise to
the following considerations, which together form the core of the computational
model of open-ended intelligence:

i. A preindividual, consisting of a non-coordinated population of agents (Figure
3.4) is comparable to a Turing (1948) "unorganized machine" (Section 4.2.5)
which is in turn analogous to a decentralized collection of processes asyn-
chronously and randomly communicating among each other. Such a frame-
work, while it can be perfectly well implemented in a computational medium,
initially produces no more than a random noise. Moreover, there is no clear
"input" or "output" of the computation as these can be any agent of the popu-
lation.

100 Chapter 4. Decentralized computing for synthetic cognitive development

ii. Alternatively, a fully formed individual is, somewhat simplifying, comparable
to a centralized synchronous meta-process assembled from separate processes
into a deterministic computation graph (Figure 4.5a);

iii. A fluid individual is, again with a chunk of salt, comparable to a probabilistic
computation graph or a non-deterministic Turing machine (Figure 4.5b), where
patterns of communication between elementary units of computation exist, but
are probabilistic and fluid rather than strictly defined.

Note that the above analogies do not claim strict isomorphism but are rather
guiding principles for proposing an implementable computational model and later
software architecture informed by the concept of open-ended intelligence and syn-
thetic cognitive development. In terms of these considerations, the synthetic cogni-
tive development is manifested by the emergence of repeating communication pat-
terns among elementary computational units – i.e. formation of deterministic or
probabilistic computation graphs from non-coordinated communications of initial
population of elementary communicating units. Further, a deterministic computa-
tion graph of elementary units can itself be considered a unit of computation at a
higher scale. As such, it can participate in the emergence of a "meta-computation"
graph, where meta-patterns of communication between higher scale units come
about in the same manner. Such multi-scale computation graph is analogous to the
model of scales of individuation (see Section 3.3.2).

FIGURE 4.6: Scalable structure of a computation process as a structured as-
semblage of assemblages of lower level computation processes.

The emergence of patterns and meta-patterns of communications between el-
ementary computational processes is a result of functional coordination that in a
computational context is best expressed by the notions of synchronization and con-
sensus. Adaptively changing levels of synchronization and consensus of a decentral-
ized computational system manifests the scheme of synthetic cognitive development
(see Figure 3.14) of a system and an open-ended computational process. In order to
move forward with the formulation of the main tenets of the model of open-ended
decentralized computing in Section 4.4.1, we first briefly define the notions of syn-
chronous and asynchronous computing and consensus. Then different computing
systems in terms of their level and sources of synchronization and consensus are
discussed.

The difference between synchronous and asynchronous computation and exe-
cution becomes important when dealing with many independent processes which
try to coordinate their actions and behaviour by interacting with each other. Such

4.4. Consensus and synchronization 101

coordination is a necessary component of decentralized and distributed systems,
which are not limited to computational systems only. For example, the human so-
cial system is also a decentralized system where independent heterogeneous actors
communicate, form assemblages, coalitions, nations, societies, families and more or
less hierarchical organizations (Veitas and Weinbaum, 2017). Another example is the
so called internet of things (IoT) – a network of cyber-physical systems connected via
the internet – which is estimated to outgrow in number humans, mobile phones and
other devices by orders of magnitude as of 20258. The sheer scale and complexity of
these systems will require the adoption of the systemic perspective of decentralized
governance – social, IT or other kind. Most of the communications in these sys-
tems will happen, not between humans and humans, or humans and devices, but
between devices and devices. The socio-technological system will no longer be able
to operate on the basis of humans deciding what needs to be done and then instruct-
ing devices to carry out certain actions. Devices, as loosely coupled computational
systems, will have to decide on their individual behaviours by coordinating with
other devices, occasionally asking for help from humans or providing already pro-
cessed and reduced information to them. Even if individual devices would manifest
completely deterministic and synchronous processes, the very fact of their intercon-
nectedness into one network and constant interaction would make the global system
non-deterministic, manifesting the model of interactive computation (see page 93).

A population of independent interacting agents is best expressed within the do-
main of computer science in terms of a message-passing framework (Hewitt, 1976),
where synchrony and asynchrony are clearly defined (Raynal, 2013):

• Synchrony. A communication among processes is considered synchronous when
every process observes the same order of messages within the system. In the
same manner, the execution is considered synchronous when every individual
process in the system observes the same total order of all the processes which
happen within it.

• Asynchrony is the reverse of synchrony. A communication among processes is
considered asynchronous, when every communicating process can have a dif-
ferent observation of the order of messages being exchanged (e.g. they can
receive the same message at different times). Likewise, the execution is con-
sidered asynchronous when there is no single established way for processes to
determine the total order of the execution of all processes within the system.
Put in yet another way, there is no notion of exogenous global time or global
perspective in asynchronous systems – these notions have to be agreed by par-
ticipants within the system.

Note immediately that synchrony is related to centralization and determinism,
while asynchrony to decentralization and non-determinism. Not surprisingly, any
synchronous communication system can be built on top of an asynchronous com-
munication system (Agha, 1986, p. 19) by constraining the latter. Synchronization is
a process of introducing constraints to the asynchronous system so that it gradually
becomes synchronous. In this sense, achievement of distributed consensus and the
progressive determination of constraints are both mechanisms of synchronization.
This leads us to the key observation of this chapter, that the mechanism of progres-
sive determination, central to the notion of open-ended intelligence and synthetic

8https://www.businessinsider.com/iot-forecast-book-2018-7?IR=T

https://www.businessinsider.com/iot-forecast-book-2018-7?IR=T

102 Chapter 4. Decentralized computing for synthetic cognitive development

cognitive development, can be expressed computationally in terms of synchroniza-
tion (and de-synchronization) of communications in a message-passing system.

The difference between synchrony and asynchrony is applicable to and helpful
for reasoning about general decentralized systems. Natural asynchronous systems
abound – nature itself can be considered an asynchronous decentralized system. For
example, as established by Einstein’s theory of relativity, two astronomical events
can be observed in different order by two independent observers if each of these ob-
servers is closer to a different event and if there is no notion of global time. Clearly,
without any level of synchrony (global or local) within a system it is quite difficult
to reason about it and impossible to build a model. Nevertheless, complex adaptive
systems cannot be purely synchronous or purely asynchronous. In the former case,
they become rigid rather than adaptive and complicated rather than complex. In
the latter – purely asynchronous – case, there is no system to reason about in the
first place. The most interesting systems are those that exhibit certain aspects be-
tween synchrony and asynchrony and, most importantly, are able to adaptively and
non-trivially change this balance. Such systems manifest open-ended decentralized
computation.

4.4.1 Open-ended decentralized computing

Finding a balance between synchronous and asynchronous aspects of an execution
and a way to specify constraints for achieving synchronization in a manner that al-
lows for a computational system to be flexible and adaptive enough, while at the
same time able to produce observably interesting and useful results, is the main
challenge of open-ended decentralized computing. It is clear that in order to build a
pragmatically viable computation system, some external constraints will have to be
designed and initiated initially. It is also clear, especially with respect to generally in-
telligent systems, that behaviours not directly related to these initial constraints, but
born from the flexibility of progressive determination during the system’s operation,
may be more important to the overall performance than the initial set-up.

Conceptually, open-ended decentralized computing supports a paradigm shift
in computer science resembling that of developmental systems theory (DST) in bi-
ological development, heredity and evolution (see page 33). Recall that DST views
development and evolution – i.e. individuation – of organisms as a "process of con-
struction and reconstruction in which heterogeneous resources are contingently, but
more or less reliably reassembled for each life cycle". Likewise, open-ended de-
centralized computing effectuates computation as the processes of integration and
disintegration in which heterogeneous independent processes probabilistically but
reliably are assembled and reassembled to pragmatically useful "goal-directed" com-
puting graphs. This process, fuelled by internal and external ecological flux, moves
fluidly within the meta-stable landscape of local or global synchrony and consen-
suses as illustrated in Figure 4.7.

The meta-stable landscape of open-ended computing is unbounded and incom-
putable but we can informally delineate it with descriptions of a few characteristic
cases, as discussed further.

4.4. Consensus and synchronization 103

FIGURE 4.7: Open-ended decentralized computing effectuates the self-
organized movement of the system’s "configuration" within the meta-stable
landscape described by the dimensions of freedom and constraint (vertical axis)
and synchronization (horizontal axis). Note that the boundaries between these

configurations are fuzzy.

Built-in complete synchrony and consensus

Enforcing synchrony onto the system without allowing any asynchronous behaviour
is essentially equivalent to designing a deterministic architecture and program. Note
that such a system can be distributed (i.e. utilizing parallel processing for trading
memory for speed) yet still centralized and synchronous, having a deterministic be-
haviour, single global clock or shared data structure, which establishes total order
on all events happening in such a system.

Completely asynchronous systems

As noted before, completely asynchronous systems cannot be reasoned about, and
therefore there are no such systems in their pure form, at least outside research lab-
oratories. Nevertheless, there could be systems that are close to completely asyn-
chronous in their design. For example, the internet could be considered such a
system by design, where some local synchrony and consensus eventually emerges.
For example, when two computers start negotiating a TCP/IP connection they can
be considered asynchronous with respect to each other, but get synchronized when
connection is established. Complete asynchrony without the mechanism for emer-
gent consensus is not practical by any measure, but an open-ended decentralized
computing system may transitionally find itself in a state close to such.

Emerging global synchrony

A viable approach of designing initially asynchronous systems is to include a mech-
anism requiring a system’s components to reach synchronous behaviour without ex-
plicitly enforcing consensus from the start. Systems based on blockchain technology
(Box 4.1) are examples of this category. Here, synchrony is achieved by eventually

104 Chapter 4. Decentralized computing for synthetic cognitive development

achieving a global data structure through which all participants of the system access
the same total order of events.

Blockchain technology based systems, introduced by Nakamoto (2008), are par-
ticularly interesting for their hybrid nature – they achieve global consensus not only
via technical means, but also with the help of economic and game-theoretic mecha-
nisms. The Bitcoin example reveals four constituencies involved in reaching consen-
sus (Antonopoulos, 2015):

1. System creators implement process consensus via software design, update
proposals, rule changes, etc.;

2. Trust providers implement runtime consensus by effectuating the system’s
consensus protocol – by voting for the longest chain with the computing power
at their disposal in the case of "proof-of-work", with assets in the case of "proof-
of-stake" or with reputation score in the case of "proof-of-reputation" consen-
sus protocols (Kolonin et al., 2018);

3. Liquidity providers – cryptocurrency exchanges – make the system open by
allowing participants to enter and exit it;

4. Marked participants – wallet holders, businesses and merchants – provide
incentives and directions of development to other constituencies by using the
system.

The above list emphasizes that the overall consensus in a blockchain-type sys-
tem is achieved not solely via trust providers, as is often assumed, but via a complex
ecosystem of consensus layers. One can imagine systems where different constituen-
cies enjoy different importance weights in achieving consensus9. In a manner of
speaking, a system with built-in synchrony is one where system creators have 100%
voting power for the initial consensus setting and where consensus is not allowed to
change. The configuration of a system involving separate but interacting consensus
layers is a general aspect of a decentralized IT governance, not limited to blockchain
technologies.

Emerging local synchrony and consensuses

Global synchrony and eventual consensus is not needed or even desired in all de-
centralized systems. For example, in the case of the internet, one does not need to
ensure that all data packages and messages in the network are well ordered: only
packages pertaining to higher order events (e.g. a client-server session or a conver-
sation) have to be strictly ordered in order to ensure the operation of the network.
In other words, only some elements of a system have to be synchronized and only
for a limited period of time. All other participants can stay asynchronous with re-
spect to each other until the need to coordinate arises. Normally, such a network
would at every moment support a number of local consensuses and synchronized
elements which change fluidly over time as the situation requires10. Moreover, local
consensuses may interact among each other for guaranteeing certain global proper-
ties of the system. In order for such a model to work, the system has to provide a
mechanism for local consensuses to emerge when needed and dissolve afterwards.

9For example, in Ethereum ecosystem, system creators have much more importance than in Bitcoin
community.

10e.g. Holochain https://holochain.org/

https://holochain.org/

4.5. Stigmergic computing 105

Note that the model of emerging local consensuses is an exemplar of open-ended
decentralized computation architecture which is fluid enough to be able to morph
into other models. For example, if a local consensus in such a system grows to en-
compass and synchronize all elements of the system, it may become a global consen-
sus. Likewise if all local consensuses disintegrate it would become an asynchronous
system. Most often, however, such a system would balance between these extremes.

Designed local consensuses

In certain cases it may make pragmatic sense to "help" the system to achieve global
coordination by designing and "locking" local consensuses as part of system’s archi-
tecture. This may put more constraints on systems behaviour, and therefore make it
less fluid yet more predictable11.

Parallel systems

Technically, according to definitions proposed in Section 4.3 and Box 4.1, parallel
systems are architecturally distributed and logically centralized. The power of such
systems and model of computation comes from the ability to split the overall task
of computation into smaller non-communicating elements of comparable complex-
ity, perform them on different physical or logical architectural components (servers,
processors, threads) and then collect them into the single final result. Examples of
computational models of this sort are MapReduce (Dean and Ghemawat, 2004), split-
apply-combine (Wickham and others, 2011) and gather-apply-scatter (Gonzalez et al.,
2012). While these systems feature different computational elements, they are not in-
dependent and are controlled by single logic – therefore closest to the in-built global
consensus model.

4.5 Stigmergic computing

As was introduced in Section 2.2.4, we are going to use the principle of stigmergic
computation in order to implement processes that drive the movement of an open-
ended decentralized computing system in its meta-stable configuration space (see
Figure 3.9 for the notion of degrees of meta-stability). Stigmergic computing is a
computational model of generalized stigmergic cooperation, which is an indirect co-
ordination between independent actors via a shared medium, where some actors
leave a trace that can be picked and acted upon by other actors. In this way, stigmer-
gic computing enables the mechanism of progressive determination by providing a
way to relate the actions of individual elements to the overall structure and func-
tion of the system. It realizes both effects of emergence (a novel behaviour arising
from lower scale of a system) and immergence (an individual action informed by the
higher scale of a system) in the single framework (Marsh and Onof, 2008). Such a
system is thus able to achieve synchornization and consensus modes as described
in the previous section and enable the mechanism of progressive determination (see
Section 3.2.4).

11e.g. SAFE Network https://safenetwork.org/

https://safenetwork.org/

106 Chapter 4. Decentralized computing for synthetic cognitive development

Recall, that progressive determination formally, yet very generally, can be repre-
sented as a chain of transitions between structure and operation, where each opera-
tion changes the structure and each structure changes the operation: ...S1 → O1 →
S2 → O2 → S3 → ... → On → Sn+1... For the implementation in a computational
medium we have to represent it in a much more detailed manner. First, in a decen-
tralized setting, the operation O1, O2, ..., On is an abstract representation of the to-
tality of many heterogeneous operations of independent processes in a population.
Second, every sub-process On → Sn+1 → On+1 requires an intermediary structure
to be accessible for both reading and writing, which, considering asynchrony, can
happen at the same time. Consequently, third, the structure S1, S2, ..., Sn is decen-
tralized in the sense that every process that realizes an operation should be able to
access only part of it without influencing ("locking") other parts. Fourth, the system
should be able to operate in a situation in which no single process can reference the
whole structure either for reading or for writing. Actually, in a normal operation, a
single process would be able to access only a small specifically localized portion of
the data structure. Graphically, the refined representation of progressive determina-
tion as stigmergic computation is illustrated by Figure 4.8.

FIGURE 4.8: Stigmergic computing. (b) is the formal representation of the pro-
gressive determination process in terms of operation giving rise to structure
and structure giving rise to operation; (a) is the visual representation of under-
lying asynchronous and concurrent operations which change parts (overlap-
ping or not) of the structure; (b) can be inferred by an observer of a system by
setting time granularity of observations, allowing to reduce Oin, Oi+1

n ... to On
and Sin, S

i+1
n ... to Sn. Note, that in a reasonably complex system, such reduc-

tion necessarily involves loss of information about some (non-essential) states
and some operations as described in Section 2.2.3 on page 24 about model

building.

In a decentralized computing system, where processes do not have access to the
global state of data structure, operations will change the structure by affecting it lo-
cally. Likewise, the structure will affect operations via its local sub-structures. As
illustrated in Figure 4.8, the general model of progressive determination ...S1 →
O1 → S2 → O2 → S3 → ...→ On → Sn+1... is an abstraction over the multiplicity of
local processes and operations ...S1a, S1b.. → Oa1 , O

b
1.. → ...S2a, S2b.. → Oa2 , O

b
2... →

S3a, S3b... → ... → Oan, O
b
n.. → San+1, S

b
n+1, This abstraction can be achieved by

an observer following the principles of model building and attempting to impose
total order on all events happening in the system – i.e. every local operation reading
from and writing to a local structure. In order to do that, such an observer has to
arbitrarily establish a time scale and granularity of observations, making inferences
Sn a Sin, Si+1

n ... and On a Oin, Oi+1
n ... valid. Note that this operation of observation

4.5. Stigmergic computing 107

is a case of lossy information compression (see page 28) subject to a degree of decom-
posability, selection for relevance and structural efficiency aspects of model building (see
page 24).

Note that in computational terms operation is realized by a process, while struc-
ture by a data structure; therefore in our context these terms mean the same and are
used interchangeably. The computational model has to accommodate and describe
requirements for both these components separately as well as for implementation
of their interaction. The remainder of this section describes these requirements in
general computational terms in order to provide the basis for the following Chapter
5. Along the way, many concepts introduced in the preceding chapters are defined
more specifically using computer science terminology.

4.5.1 Process

Let us first specify the notions of process and agent and their usage in our context.
A process (or operation) is a computational entity that reads in certain data as an
input, performs a transformation on that data using certain function and writes it
out as an output (Figure 4.9):

FIGURE 4.9: Illustration of an elemen-
tary process pi as an entity perform-
ing function fi on input (data object ox)
and producing output (data object oy).

FIGURE 4.10: An agent is com-
posed, or "owns", one or more sim-
ple or complex processes by provid-
ing computational capacities and en-
ergy to perform work of transform-
ing input data objects to output data

objects.

An agent is an entity which provides resources needed for the process to do
its "work", as defined by its function and specific output and input (Figure 4.10).
In computational sense such resources are equivalent to computational work given
computational capacities as adequate for the complexity of the function. Note that
an agent can contain a complex process (i.e. a combination of elementary processes).

4.5.2 Message passing for process interaction

The most suitable computational expression of interacting heterogenous agents is
the message-passing system or framework where agents exchange data objects. A
message-passing system is a system where any pair of processes (pi, pj) can directly
communicate by pi depositing (sending) values (messages) in an object (the channel
from pi to pj), and pj withdrawing (receiving) values from this object. If we denote
such an elementary read/write operation on an object as op, then all operations that

108 Chapter 4. Decentralized computing for synthetic cognitive development

happen during the life of the system produce a set OP . Further, we can define an
order operator

op−→which, when applied to all operations in a set, produces a partial
order ÔP = (OP,

op−→). The operator is defined as follows: if we randomly draw
two arbitrary operations from OP and denote them op1 and op2, then op1

op−→ op2 if
op1 terminates before op2 starts. Two operations which are not ordered by

op−→ are
concurrent. Note that the partial order ÔP on the set of operations in the system
defines a particular computation. If ÔP is the total order, then the computation is
sequential and synchronized. This is due to Raynal (2013).

By applying the above formalization to the discussion of meta-stable configu-
rations of open-ended decentralized computation (Section 4.4.1) we infer that syn-
chronous, asynchronous or partly synchronous configuration of a system can be ex-
pressed as a relative number of totally ordered operations with respect to all op-
erations in the system. Yet this formulation cannot grasp the possibility of partial
synchronicity and local consensus(es) without defining the topological relations of
operations, processes and objects.

Approached a bit more concretely, every operation in OP is a triple (pi, rw,Xij),
where pi is the process issuing the operation, X is an object on which the operation
is performed, and rw is either read or write. Further, an objectXij is a communication
channel between processes pi and pj , and therefore is a tuple (pi, pj). This allows us
to express an operation simply as a relation between processes in the form:

opij = (pi, rw, pj), rw ∈ [read,write] (4.1)

The complete history of interactionHa,b between two processes pa, pb in a system
composed of N number of processes is then simply a subset of OP :

Ha,b ⊂ OP ; a, b ∈ [1, N] (4.2)

Likewise, we can define the history of interactions of any arbitrary cluster C of
processes with the minimum size 2 and maximum size N as:

Hc ⊂ OP : c ⊂ N (4.3)

Based on the above we formulate working definitions of topological relations
and local synchronicity in a message-passing system:

• Local synchronicity is the total order of operations of a cluster of processes
containing strictly less than all processes of the system (as otherwise it becomes
the global synchronicity).

• Topological relation between two processes pi, pj is defined by existence and
frequency of operations opij , opji issued by these processes12.

12Consider the brain as an example. Topological relations between neurons in the brain are ex-
pressed as synapses, which, on the one hand, are vehicles of communication signals travelling from
neurons. On the other hand, synapses grow and get shaped due to this communication. The struc-
ture of the brain reflects patterns of past activities of neuronal communication as much as it shapes
these communications in the future which is a biological expression of the principle of progressive
determination (see Section 3.2.4 on page 70).

4.5. Stigmergic computing 109

In order to define the notion of topological structure of the whole message-
passing system it is convenient to introduce the notion of time – a nominal mea-
surement scale based on which the existence and relative frequencies of operations
can be measured. In principle, an exogenously defined global time is not needed
for defining a topological structure, yet is convenient to assume for didactic and rea-
soning purposes. Suppose, therefore, that we can define this scale in such a manner
that each operation can be assigned a point in it (timestamp) based on the exact time
it was issued. We denote such timed operation by optij , where t is the timestamp.
An observer, who is observing a message passing system, arbitrarily chooses an ob-
servation period T = (t1, t2). The topological structure of a system given period
T is described by the frequency distribution of pairwise topological relations of all
processes optij ∈ OP of that system, where t1 < t < t2.

Having in mind these definitions, we observe the following:

i. The topological structure of a system can be measured without knowing or
observing the "start" and the "end" of the system’s operation, but by defining
observation period T , which, of course, could span the entire lifetime of a sys-
tem as a special case.

ii. The change in a system can be defined and measured by choosing the sequence
of observation periods TS = T1, T2, ..., Tn, observing topological structures (i.e.
distribution of frequencies of operations) for each period and then comparing
them. Note that the observed change would depend on at least on two ex-
ogenously chosen parameters: the granularity of observation periods and the
method of comparison of distributions.

iii. Communication channels opij can be sub-divided into sub-channels by the
type of operation, allowing synchronicity, topological relations and structure
to be measured per every type of operation or selected subset of operations.

iv. There is a deep similarity between defining the topological structure of the
message-passing system and the notion of "near-decomposability" of hierar-
chical complex systems as defined by Simon (1962). Both can be expressed in
terms of a matrix of frequencies (or other parameters) of interactions among
elements. Hierarchy, which is a topological structure, can be inferred from
properties of this matrix (see page 17).

v. Notwithstanding the above, the topological relations and history of operations
of a message-passing system can be represented by a network (graph) data
structure, which is the second most important component of stigmergic com-
puting. We attend to this in more detail in the following section.

4.5.3 Graph models for data structure

A natural choice for representing the topological structure of a message-passing sys-
tem is the property graph G = (V,E, λ, µ) (see page 38), where:

i. processes pi are represented as vertices vi ∈ V ;

ii. communication channels between processes pi and pj are represented as di-
rected edges eij ∈ E;

iii. process types and other properties are represented as labels on vertices in λ;

110 Chapter 4. Decentralized computing for synthetic cognitive development

iv. operation types, frequencies and other properties are represented as labels on
edges in µ.

The particulars of a message-passing graph are illustrated in Figures 4.11 and
4.12. An edge between two processes forms when the first process writes to an
object which is afterwards read by the second process, resulting in a communi-
cation event. Formally, a communication event is an ordered pair of operations
op1 = (pi,write, X), op2 = (pj , read, X) : op1

op−→ op2. One or more communica-
tion events constitute a communication channel. All communication channels in
a message-passing system, represented as edges between processes, constitute a
message-passing graph, which can form a higher order computation process.

FIGURE 4.11: A message-passing
channel between process pi to pj
forms when two operations op1 =
(pi,write, X) and op2 = (pj , read, X) are
ordered by op1

op−→ op2. In a prop-
erty graph it can be represented as a
direct link eij , optionally labelled with
the type of object X and timestamps of

operations op1, op2.

FIGURE 4.12: The message-passing
graph is constructed by considering all
communication channels in a system
and their history of operations. This
type of graph, which connects a "meta-
input" object with a "meta-output" ob-
ject can be considered a meta-process
that can participate in more complex
structures at a higher level. Note the
resemblance to the population of "un-
organized" Turing machines in Figure

4.6 on page 100.

As we have seen, a computation can be represented in terms of interacting pro-
cesses (see Figures 4.5, 4.6 and 4.2), and therefore it is easily seen that a communica-
tion graph also represents a computing network (Gershenson, 2010) or a computa-
tion graph. Communication events and communication channels are consequences
of particular orderings of operations in a system. This means that a computation
graph is an emergent structure based on these orderings. We can now try to define
synchronization and its built-in and emergent aspects more precisely for our pur-
poses: (1) synchronization between two processes occurs when they establish an en-
during communication channel; (2) built-in synchrony results from the interaction of
processes via exogenously constructed channels by system designers; (3) emergent
synchrony occurs when a processes issuing a read operation on a particular object
finds or matches another process that has issued a write operation on the same object,
thus forming a communication channel without defining it exogenously.

The definition of emergent synchrony is of particular importance for the com-
putational notion of generalized stigmergy. First note that the distinction between
direct and indirect communication can be defined using these formulations:

4.5. Stigmergic computing 111

• a direct communication happens when processes issue operations into an al-
ready existing communication channel (i.e. the "writer" and "reader" of a mes-
sage are known before the communication event starts);

• an indirect communication happens when processes issue operations without
considering a particular communication channel which can (or can not) form
after an arbitrary period of time since both read or write events were issued.

Generalized stigmergy in computational terms is a system of independent di-
rectly and indirectly communicating processes with memory, where operations or
objects can be stored for an arbitrary amount of time as well as accessed by other
processes. A computation happens in such a system when direct or indirect commu-
nication events form into communication channels and then computation graphs.
Open-ended decentralized computing allows for dynamic adjustment of degrees of
freedom of stigmergic computation in terms of relative proportion of built-in and
emergent synchronization at any point in time within life of a system. Recall from
Section 4.4.1 that open-ended decentralized computing effectuates computation as
the processes of integration and disintegration in which heterogeneous independent
processes probabilistically but reliably are assembled and reassembled to computa-
tion graphs. Guided self-organization, on the other hand (see Section 2.2.5), only
approaches the integration aspect by searching for proper ways to constrain the self-
organizing system in order to increase probability for it to reach a priori defined goal
states. Obviously, open-ended decentralized computing embraces, but is not limited
to, guided self-organization. Stigmergic computing is the underlying computational
framework that enables open-ended computing.

Memory is the key aspect of stigmergic computing since it realizes the notion
of a shared medium through which independent processes and agents indirectly
coordinate their activities. In terms of the process of progressive determination,
memory enables the structure of a computation graph, which influences processes
and operations, as well as being influenced by them. In this sense, a computation
graph, emerging from (possibly guided) self-organization of communication chan-
nels between processes, does not only realize certain global computations at every
moment of the system’s lifetime, but also influences its own further self-organization
via progressively constraining further operations. Note that in this model the shared
medium is a distributed memory structure composed of independent local components
realized by communication channels and objects "readable" by other processes in the
system. Since decentralized computing principles do not allow for any process of a
system to access directly the global state of structure (i.e. states of all communi-
cation channels at any particular point in time) processes can only query states of
particular local channels. Of course, as noted earlier, there is no restriction for any
process, which has enough computation resources, to query each communication
channel (i.e. link) in order to construct a faithful representation of the whole com-
putation graph in its own memory. Note, however, that this can be done only via
communication with other processes and can be only an approximation, since other
processes will be changing the structure at the same time. Architectural aspects of
such decentralized "shared medium" are discussed in detail in Chapter 5.

The next section presents and shortly discusses the "classical" example of stig-
mergy – ant colony – as a special case of generalized stigmergy using definitions
developed above.

112 Chapter 4. Decentralized computing for synthetic cognitive development

4.5.4 "Classical" example of stigmergy

Since the early 1990s, examples and mechanisms of the collective behaviour of so-
cial insects, including termites, bees and ants, have been a rich source of inspira-
tion for scientists developing combinatorial optimization, communication networks,
robotics, multi-agent systems, artificial intelligence, "swarm intelligence", decentral-
ized computing systems and more (Abraham, Vitorino, and Grosnan, 2006; Dorigo
and Stützle, 2004; Stützle and Dorigo, 1999). The explosion of this line of research
was due to the realization of applicability of the mechanism of stigmergy – i.e. in-
direct coordination between independent actors via a shared medium (see Section
2.2.4) for computationally solving combinatorial optimization problems (Colorni,
Dorigo, and Maniezzo, 1991).

Classically, the stigmergic mechanism of an ant colony optimization is expressed
by the ability of individual ants (i.e. decentralized processes) to access and read the
environmental signals in form of pheromones (i.e. objects) which are left by other
ants (i.e. decentralized independent processes) on a terrain (i.e. global data struc-
ture). While stigmergic optimization is a powerful mechanism for achieving higher
level intelligent behaviour due to coordination among agents of much simpler be-
haviour, it is still a simplification of general decentralized computing systems. First,
observe that even social insects combine both direct and indirect communication
(Bonabeau, Dorigo, and Theraulaz, 1999). Second, swarm optimization and algo-
rithms are often constructed assuming homogeneity or at least simplicity of agents
as well as a single modality of their interaction (Li et al., 2016). In more general and
complex settings, especially in the case of complex agents, the computational model
has to allow for hybrid direct and indirect interactions, heterogeneous agents and
multiple modalities. Finally, the existence of an a priori defined global data structure
(the terrain) is at odds with the basic principle of decentralized computing. The im-
portance of following this principle from the point of computational efficiency and
viability of a decentralized system will be discussed in Chapters 5 and 6. Let us
see now how the "classical" stigmergy would be represented in terms of generalized
stigmergic computing:

• First, the open-ended computing model considers the environment of any in-
dividuating agent a population of other interacting agents; therefore what is
often considered the global structure of environment is represented here as a
network of other agents, only with fixed topology. The environment (terrain) is
a "stability landscape" which is a degree of metastability (see Section 3.2.3 and
Figure 3.9). While usually, as well as in this case, the landscape is considered
static and defined exogenously to computation, it need not be so in general.

• Second, agents "travelling" through such a landscape leave traces by issuing
strictly local write operations into direct communication channels to agents that
are part of the landscape. Likewise, traces are picked by processes issuing read
operations on the direct communication channels with agents representing bits
of the environment. The event of an agent representing an "ant" establishing
a direct communication channel with an agent representing "a bit of local en-
vironment" implies the topological closeness of these agents, equivalent to an
"ant being in a certain local point on a terrain".

• Third, agents representing "ants" may perfectly well communicate among each
other via direct channels in different modalities too if that is deemed necessary.

4.6. Summary of the chapter 113

The goal of this example is to provide a simple enough illustration of a known
stigmergic process using the open-ended computational model. Obviously, the model
is too rich for representing the interaction of homogeneous simple agents in a stable
terrain. Our goal, however, is to establish a maximally flexible computational frame-
work which is able to support simulation, dynamic emergence, self-organization or
a representation of a broad variety of more or less complex systems and environ-
ments, including the "classical" case of stigmergy in terms of an ant colony.

4.6 Summary of the chapter

Open-ended decentralized computing is a computational model able to support
the synthetic cognitive development process. Its is conceived by applying both
the broad computational metaphor as well as particular methods, models and ap-
proaches developed within the domain of computer science and, particularly, de-
centralized computing systems research. In a manner of speaking, the open-ended
computing model is the result of looking through the "computational lens" at the
philosophical framework of open-ended intelligence. In that, it conceives in a dif-
ferent perspective, complements and expands certain aspects of the philosophical
framework, rather than merely "implementing" it. Given the main tenet of open-
ended intelligence philosophy of maximum freedom, the computational model al-
lows a wide variety of configurations of decentralized systems to be potentially
simulated and, most importantly, implement their self-organization and emergence
via enabling the mechanism of progressive determination. Therefore, it creates the
ground for simulation modelling of particular configurations as well as the emer-
gence of decentralized systems and individuation of cognitive agents in general.

As introduced in Chapter 1, the methodological approach of this thesis is an in-
terdisciplinary design inquiry relating the most abstract conceptual frameworks of
the philosophy of individuation and becoming with concrete system implementa-
tions in software. The model of open-ended decentralized computation provides
such a bridge relating theory and practice. Walking this bridge, however, requires
the design of a software architecture based on the principles of computation model
for performing simulation modelling experiments – i.e. "methodological blenders"
(Barandiaran, 2003; Di Paolo, Rohde, and De Jaegher, 2008; Sayama, 2014). This will
be approached in Chapter 5.

We started this chapter by discussing sub-symbolic and symbolic representa-
tions, symbol grounding, revisiting Simondon’s philosophy of information and no-
tions of selective and descriptive information. This leads to the precise formulation
of deterministic and non-deterministic computation and the corollary that determin-
ism is a special case of non-determinism. An overview of the contemporary and
historical debate around the question "what is computation" is provided including
discussion of Turing’s computation models and beyond. We then propose two no-
tions of computing: closed computing, based on the classical Turing (1937) model and
strict interpretation of the Church-Turing thesis and open computing, based on the
later model of Turing (1948) and a contemporary model of hypercomputation: inter-
active computation.

The second part of the chapter deals with the "conundrum of decentralization"
and defines precisely the notions of centralization, decentralization and peer-to-peer

114 Chapter 4. Decentralized computing for synthetic cognitive development

structures in terms of network science. Noting the possibility to represent comput-
ing processes in terms of graphs, we formulate the second important corollary of
the chapter, that deterministic or non-deterministic properties are reflected by the
structure of the computation graph of the computation in question.

Next, we discuss how an initially non-deterministic computation process can
reach determinism via consensus and synchronization which allow for different lev-
els of fuzziness. Here we observe that the process of "organizing the unorganized",
proposed by Turing (1948) corresponds to the evolving structure of the computation
graph. Furthermore, since the framework of open-ended intelligence and progres-
sive determination is formulated in terms of population of independent interacting
agents, different structures of the evolving computation graph reflect the notions of
preindividual, fluid individual and fully formed individual. Recall that the scheme of
synthetic cognitive development posits alternating levels of integration and disinte-
gration of the system within a population of interacting agents. The computational
expression of such a population is the message-passing framework, where notions
of synchrony and asynchrony are well defined. Building on these observations and
corollaries we propose the model of open-ended decentralized computing which
conceives a population of interacting elements with dynamically changing and fluid
levels of synchrony and asynchrony. The fluidity of the system is then character-
ized by naming possible intermediate configurations of its meta-stable landscape in-
cluding built-in complete synchrony and consensus, emerging local synchrony and
consensuses and complete asynchrony.

The realization of open-ended decentralized computing is conceived by general-
izing the mechanism of stigmergic coordination into the notion of stigmergic com-
puting. At the highest level, stigmergic computing integrates interactive computa-
tion in the message-passing framework with the fluid topology of the computation
graph. The low-level semantics is developed in terms of computational primitives:
(1) elementary computing processes, which are also vertices of a graph which (2) send
and receive data objects (messages) to each other; (3) messages correspond to com-
munication events which are persisted in the graph as links between vertices. Note
that the integration of interactive computation and shared topology is achieved by
the duality of computational primitives enabling both direct communication and
communication via the shared medium. Finally, we illustrate how the "classical"
case of stigmergy – ant colony – can be expressed within the generalized model of
stigmergic computing.

With the model of open-ended decentralized computing we show how the mech-
anism of progressive determination, central to the notion of open-ended intelligence
and synthetic cognitive development, computationally can be expressed in terms
of synchronization of communications in an asynchronous computing system com-
posed from two levels – message-passing framework and fluid graph structure. Uti-
lizing semantics of stigmergic computing, open-ended decentralized computing ef-
fectuates computation as the processes of integration and disintegration in which
heterogeneous independent processes probabilistically but reliably are assembled
and reassembled to persistent, yet fluid computational graphs.

The best way to understand the relation between stigmergic computing and
open-ended decentralized computing is to consider the latter a higher level model,
while the former as the basis on which this higher level model can be expressed.
Nevertheless, both concepts are in close relation and to a large degree overlap yet
are explained separately, largely for didactic reasons. Furthermore, both concepts

4.6. Summary of the chapter 115

are very general models of computation which do not try to limit the range of simu-
lation models and dynamics that can be expressed with them – just as the universal
Turing machine does not limit the range of algorithms that can be implemented with
it.

In the next chapter we will propose the software architecture for the actual im-
plementation of open-ended decentralized computing.

117

Chapter 5

Towards architecture for
open-ended decentralized
computing

This chapter proposes an implementable software architecture for realizing the com-
putational model developed in Chapter 4. The main tenets of the computational
model and, consequently, the functional requirements for the architecture are:

i. Population of processes: asynchronous operation of large numbers of indepen-
dent and heterogeneous elementary computational processes encapsulated into
agents (see Section 4.5.1);

ii. Custom behaviours: ability to define and implement arbitrary complex compu-
tational processes in the Turing (1937) sense within every individual agent of
the system;

iii. Heterogeneity: efficient distribution of computational resources for each agent
as required by their processes, which can differ widely in logic and compu-
tational complexity as estimated by the time and memory needed for process
execution;

iv. Direct interaction via message passing: ability of agents to interact continuously
with each other on a peer-to-peer basis, as required by their own behaviours.
For this end, agents have to be encapsulated into a message-passing frame-
work (see Section 4.5.2);

v. Indirect interaction via shared medium: a decentralized memory in terms of graph
data structure, readable and writeable by each agent of the population in a con-
current and independent way (see Section 4.5.3) needed to achieve stigmergic
computing (see Section 4.5).

vi. Evolving neighbourhood structure: each agent is embedded into the graph data
structure via its explicit relations (links) to one or more other agents; links can
be dynamically changed during operation (created, deleted, arbitrary proper-
ties changed);

vii. Radical decentralization: an agent and its processes can interact with the shared
medium only via its local structure – i.e. explicit relations to the neighbours;

118 Chapter 5. Towards architecture for open-ended decentralized computing

In terms of software design, these requirements can be satisfied by tightly cou-
pling two components: actor framework and graph computing engine. The actor frame-
work enables requirements i to iv: population of processes, custom behaviours, het-
erogeneity and direct interaction via message passing. The graph computing en-
gine enables requirements v to vii: indirect interaction via shared medium, evolving
neighbourhood structure and radical decentralization. These two components and
their interaction determine the software architecture of open-ended distributed com-
puting and are discussed in detail in the following sections.

5.1 Actor model and framework

5.1.1 Description of the model

The actor model is a mathematical model of concurrent computation, proposed by
Hewitt, Bishop, and Steiger (1973) and further developed by Clinger (1981), Greif
(1975), Agha (1986) and others. It is conceptually based on one kind of object – an
autonomous communicating actor (processor, agent, etc.) which does not presup-
pose any representation of primitive data or control structures. Data structures can
be programmed or hard-wired and encapsulated or dynamically evolved to each
actor separately or to an ensemble. This includes possibilities of emergent compu-
tation, genetic or evolutionary programming and other local computational mecha-
nisms. Actors communicate via immutable messages and in this sense constitute a
message-passing framework. Patterns of message passing between actors is the only
control structure which defines the functionality and behaviour of a particular actor
system as a whole (Hewitt, 1976). Note immediately that no constraints on message-
passing patterns or even requirements for their existence are defined by the lowest
level of the actor model. System engineers enforce these constraints via high level
design or let them emerge during computation.

An actor is a self-contained, interacting, independent component having a be-
haviour and a mail address. An actor’s behaviour is expressed by a computational
process having inputs, outputs (see Figure 4.10) and computational resource require-
ments, including storage. Actors communicate with each other via asynchronous
message passing using their mail addresses. Basic actor primitives, which allow
all further abstractions to be built, are: (1) send(a,v), which creates a message with
contents v and sends it to an actor with address a; (2) newactor(e) – creates a new
actor evaluating expression e and returns its mail address; (3) ready(b) – frees the
actor to accept the next message and readies it to execute a behaviour b. Note that
all computations in the actor model are built by these primitives only, which are
necessarily executed on behalf of an actor in an actor system. No primitive can be
executed without an actor that executes it. For example, newactor(e) can be executed
only by another actor, in which case they may establish a parent-child relationship
within the topology of the actor system. This primitive allows new processes and
data structures to be created dynamically. The ready primitive gives actors a history-
dependent behaviour by defining and delineating groups of actions as atomic. The
send primitive is an asynchronous analogue of function application which causes
an action on behalf of another actor by putting a message in its mailbox (Agha and
Jamali, 1999).

5.1. Actor model and framework 119

Actor system is a container which enables actor creation, addressing and mes-
sage passing, but is otherwise computationally passive and ignorant of internal pro-
cesses encapsulated within actors. Actors can know the mail addresses of other ac-
tors, which makes them acquaintances, or neighbours. Mail addresses can be contained
in messages, which allows for a dynamic actor interconnection topology, where ac-
tors can connect directly to each other based on indirectly passed and received mes-
sages (Callsen and Agha, 1994; Houck and Agha, 1992). The actor system therefore is
a dynamic network (graph) structure, where nodes are actors with links to their mu-
tual acquaintances. Using these links, every actor can in principle reach every other
actor and learn local or global network structure via distributed message-passing
algorithms (Raynal, 2013).

Flexible actor creation and reconfiguration supports the incremental construc-
tion of distributed computing systems; using the three primitives, actor systems can
be dynamically configured and reconfigured. New actors can be created, destruc-
ted and connections between them established or broken as computation proceeds.
Therefore, the actor model does not require the shape of the computational problem
to be completely established or execution resources to be fixed before computation is
initiated (Agha and Jamali, 1999). These properties clearly position the actor model
and semantics in line with the concept of open computing (see Section 4.2.5).

Further, instantaneous snapshots of an actor system manifest particular configu-
rations of its message-passing graph (ibid.). Recall from Section 4.5.3 that a partial
order of messages in a communication graph define the computation graph and, there-
fore, the logics of the particular computation. Therefore, the actor system as a whole
can be seen as a meta-computation built or emerging from interactions among lower
level computational processes, which is the major requirement of the open-ended
decentralized computation model.

Clinger (1981) proposes a convenient formalization by positing event as a prim-
itive object of the model along with actor. An actor represents a computational
agent that can be thought of as having its own separate processor on which to run.
An event then represents the arrival of a message at the target actor. This model
uses partial orders of events to represent concurrency analogously to the message-
passing aspect of stigmergic computing (see Section 4.5.2). Formally then, a compu-
tation of an actor model is a structure 〈E,A, T, act−→, Arr〉, where:

i. E is a set of events;

ii. A is a set of actors;

iii. T is an association of each event with the target actor T : E → A;

iv. Arr is a collection of irreflexive total orderings arra−−→ of message arrival events
E, defined on T−1(a); a ∈ A;

v. act−−→ is the irreflexive partial ordering of events E, such that no event has more
than one immediate predecessor.

Observe that the last two items, i.e. orderings act−−→ and arra−−→ define a message-
passing framework with only direct messages, where each message has an activation
(at the source actor) and an arrival (at the target actor). Events that define computa-
tion are arrivals; activations must happen for each arrival to happen, but their order
is not important for computation. If we assume the global time in an actor system,
both arrival and activation of an event e can be assigned respective timestamps tseact

120 Chapter 5. Towards architecture for open-ended decentralized computing

and tsearr that would define the amount of time it takes for a message to reach its
target: timee = tsearr − tseact. It is a fundamental property of the actor model that
this time is finite, but unbounded – that is, messages are guaranteed to arrive at
their targets, but there is no upper limit to the amount of time timee that this event
can take. This property allows the actor model to express non-deterministic com-
putations without reference to the halting problem which makes it "super-Turing"
(Hewitt, 2010, 2013).

The actor framework is an actual software framework, package or system which
enables development of actor systems. An actor framework is normally tied to the
programming language in which it is implemented, or, at least, which it supports. At
the time of writing, many popular programming languages had an actor framework,
including C++, languages based on Java Virtual Machine and more1.

(A) Actors encapsulate a thread and state.
The interface is comprised of public methods
which operate on the state. Adapted from

Agha and Jamali (1999).

(B) An example network of several actors.
Each actor has its own mailbox and isolated
state. Based on its designated behaviour,
the actor responds to incoming messages by
sending new messages, spawning new actors
or changing its future behaviour. Adapted

from Erb (2012).

FIGURE 5.1: Actor model and system

Hewitt (2017) notes that the fundamental advance of the actor model was the
decoupling of a sender from the communications it sends – once a message has been
sent, it loses any relation to the sender and is delivered on a best effort basis. This
is a sharp difference from other models of concurrent computation, where message
sending is tightly coupled to the sender, which synchronously transfers the mes-
sage to some persistent structure – e.g. buffer, queue, mailbox, channel, broker or
server – for temporary storage and retrieval by a reader. This absence of the global
state in the actor model allows it to embrace inconsistencies inherent in large decen-
tralized systems. Actually, consistency and synchronous execution are special cases
within the actor model and have to be explicitly enforced if considered necessary by
designers. Therefore, the model implements determinism as a special case of non-
determinism, which is at the very basis of open-ended decentralized computing (see
Section 4.2.3).

The absence of the requirement of persistent global state and synchronous exe-
cution, while allowing for richer and more scalable models of computation, is also
difficult to reason about and creates a great deal of confusion, which has possibly
contributed to complications in the adoption of the actor model in practical comput-
ing and software development. At the time of its conception and early development

1For an exhaustive list, see https://en.wikipedia.org/wiki/Actor_model.

https://en.wikipedia.org/wiki/Actor_model##Actor_libraries_and_frameworks

5.1. Actor model and framework 121

in the 1970s, the actor model did not enjoy the popularity of the other computa-
tional models of Neumann (1945) and Turing (1937), also due to the limitations of its
physical implementation on existing computer architectures. Yet the model gained
popularity with the development of multi-core computer architectures, parallel and
distributed computing, where it fits and excels naturally (Greif, 1975). Observe also
that the actor model effectively implements the concept of interactive computation
(see Section 4.2.5) and constitutes a single currently viable super-Turing computing
model (Hewitt, 2013; Nayebi, 2014).

5.1.2 The fundamental principle of (de)centralized computing

The actor model was originally introduced as a "universal modular formalism for ar-
tificial intelligence" that does not require a global observer, algorithm or manager. It
aimed to model intelligence [. . .] in terms of a society of communicating knowledge-
based problem-solving experts. In turn each of the experts can be viewed as a so-
ciety that can be further decomposed in the same way until the primitive actors of
the system are reached". The nature of the communication mechanisms needed for
effective problem solving is modelled "by a society of experts and the conventions of
discourse that make this possible" and is aimed at developing a framework for prob-
lem solving involving parallel versus serial processing and decentralization versus
centralization of control and information storage (Agha, 1986; Hewitt, 1976; Hewitt,
Bishop, and Steiger, 1973).

Hewitt and Manning (1996) proposed a notion of participatory semantics in or-
der to account for the research of multi-agent systems in terms of scalable, plural,
open information infrastructures, comprised of humans, equipment and services
(see Figure 5.2). It can be seen as a generalization of the mathematical actor model
for concurrent computation to reason about any participatory, distributed and open
multi-agent activity, including human, social, biological and especially hybrid socio-
technological systems.

FIGURE 5.2: Participatory semantics: participation in multi-
agent systems depends on a synergy of interdependent, over-
lapping and mutually supporting components: availability in-
frastructures and participatory infrastructures. Adapted from

Hewitt and Manning (1996).

Participatory semantics and the actor model are inspired by concepts in physics,

122 Chapter 5. Towards architecture for open-ended decentralized computing

such as (quantum) indeterminacy and relativity (Hewitt, 2010; Hewitt, 2006). Con-
cretely, it relies on the concept of information that is necessarily incomplete and re-
lational. Information expresses the correlation of configurations of interacting phys-
ical (or computational) systems – the principle that Hewitt (2006) derives from re-
lational quantum mechanics. This principle states that "the way distinct physical
systems affect each other when they interact (and not of the way physical systems
’are’) exhausts all that can be said about the physical world. The physical world is
thus seen as a net of interacting components, where there is no meaning to the state
of an isolated system". This principle is in line with the Simondonian concept of
information (see Section 3.2.1) where information can be signified only in the con-
text of the interaction but not exogenously. In terms of Simondon’s philosophy of
information, the meaning of a state of a system S1 can only be signified by an ob-
serving system S2 for which the state of S1 is significant, or meaningful. Concepts of
quantum mechanics and philosophy of information force one to give up notions of
a description of a system independent from the observer and absolute state (ibid.).
The actor model expresses these concepts by excluding the notion of a global state of
the system from the definition of computation and discouraging its use, while leav-
ing the ability to enforce it through software design decisions – i.e. any actor, given
enough resources and time, can in principle learn a global state.

The issue of the global state of the multi-agent system and an agent’s ability to
acquire it via learning enables the computational metaphor to be used more precisely
for addressing "the conundrum of decentralization" (see Section 4.3). Consider an
actor system where each actor knows and can send a message to a certain random
number of other actors, which is strictly less than the number of all actors in the
system. This defines an a priori decentralized system. First, observe that such an
actor system can be represented in network or graph form. Second, in order for any
actor to have knowledge of the global state of the system, it has (1) to know all other
actors and (2) to have a local representation of each actor’s state in its own memory.
Consider then a simplified graph structure G = (V,E, µ), with actors a ∈ V and
their "knows" relations eµi,j ∈ E; µ = knows; e : ai

knows−−−−→ aj . If one of the actors
in such a system – let us denote it aomni – is set to learn the global structure of the
graph, it needs: (1) to connect to all other agents with edges eµomni,j ∈ E; j ∈ [1, |E|],
(2) enough memory to store faithful representations of all actors a ∈ V ; a 6= aomni
and (3) enough memory to store faithful representations of all links between all other
actors eµi,j ∈ E; i, j 6= omni.

We can now infer from the above two important considerations. The first is that
aomni has to have at least as much memory storage as the whole actor system in or-
der to represent it precisely. Considering decentralized systems of a massive scale
(e.g. internet), this is a formidable practical constraint. The second consideration is
more subtle and has to do with the dynamic nature of multi-agent systems. Suppose
that aomni realizes that, instead of holding a copy of each actor’s state in its mem-
ory, it could simply retrieve them at demand through existing connections – using
the network structure as a kind of "external memory". This way, aomni could have
access to the global state at will via communication: i.e. by broadcasting a single
message ("send me a copy of yourself") to all actors and receiving one message from
each of them. This would save aomni from prohibitive memory requirements. But,
from a computer-scientific perspective, this is just trading a certain kind of compu-
tational resource for another – in this case memory for time, since message sending
and receival necessarily takes time and processing (Li et al., 2018). Furthermore, the

5.1. Actor model and framework 123

context of the dynamic decentralized multi-agent system means that actors may and
do change their states constantly, and therefore aomni has to send and receive all mes-
sages fast enough so that no actors in the network change before all answers come
back. Again, considering actor systems of massive scale and their asynchronicity,
such a scenario is close to impossible. Actually, even having a memory of the scale of
the whole network does not save aomni from the need to update its copy every time
the network changes, which implies constant communication over existing links.

Based on this discussion we can formulate the fundamental principle of decen-
tralized computing. Suppose that aomni has a computational task that needs infor-
mation from each actor in the network as an input and can choose an algorithm
for any possible combination of storage and communication, as explained above. The
actual choice of the combination would depend on the following parameters:

i. cost of internal storage costmemory;

ii. cost of communication costcomm;

iii. speed of communication in terms of the amount of time needed to exchange
messages with each actor tm and

iv. rate of change in the actor system TS, defined as the maximum time between
two observations which do not differ from each other (see Section 4.5.2).

The actual choice of parameter combination involves a trade-off which depends
on the immediate context of a computation. Actor aomni would be inclined to use
more internal storage when storage costs costmemory decrease, communication costs
costcomm increase, speed tm decreases and rate of change decreases, i.e. TS increases.
Likewise, it would be inclined to use more communication over existing network
connections when storage costs costmemory are high, communication cost costcomm is
relatively small, the speed tm is high and rate of change is high, i.e. TS is small. This
principle emphasizes that decentralized computing systems are inherently relativis-
tic – something that the actor model embraces at the conceptual level. Furthermore,
this principle is closely related to the fundamental trade-off between the comprehen-
sibility of an environment and the information loss about the "true" nature of it at
each moment of comprehension in a generally intelligent system, embodied and em-
bedded in certain environments and subject to changing environmental situations,
as expounded by the notion of ecological rationality (see Section 2.2.3).

5.1.3 Extending the actor model with mobility and location

Another key issue in developing multi-agent systems that the actor model allows
us to address at a fundamental level is mobility. Obviously, implementation of the
model requires computing resources for enabling processing, storage and commu-
nication for processes which actors encapsulate. The physical implementations of
such computing resources are by convention called nodes – i.e. servers, processors,
computing centres, etc. – that together make a distributed computing infrastructure
of cloud infrastructures, sub-networks and eventually a global network. Mobility
allows an agent to migrate freely from one such node in a distributed computing
environment to another to seek "better" execution environments (Agha and Jamali,
1999). It allows actors to be consolidated into physical assemblages (in a very sim-
ilar sense discussed in Section 3.2.2) in order to enable a particular computation
graph in efficient manner. For example, if an agent needs to access a large amount

124 Chapter 5. Towards architecture for open-ended decentralized computing

of data (e.g. machine learning dataset) in different locations, it could make sense for
an actor to migrate to these locations and do the processing there. This flexibility
can be approached from at least two aspects – a computer-scientific and economic –
both stretching the limits of computational systems as usually understood. The full
discussion of these aspects is outside the scope of this work, but it is important to
mention them for suggesting the significance and possibilities of the actor model for
multi-agent systems development.

First, fundamentally, computational complexity is expressed as a combination of
the memory (space) and time needed for a particular computation to perform. The
capacity of physical computing resources is expressible by the same combination.
The whole field of computer science, on both theoretical and practical levels, essen-
tially deals with only one problem – finding and enabling efficient combinations of
memory and time for particular computations. In distributed systems time has two
constituents: processing time and communication time (note that all non-trivial com-
puting systems are distributed in this sense – including a single processor). Tight as-
semblage of all processing and storage units in terms of physical locality allows the
same computation to be performed more efficiently by reducing the time of com-
munication. Mobility in the actor model allows the capability to be conceived of
computing systems to search and find such combinations themselves.

Second, in order to support a system in which actors would autonomously yet
collectively search for assemblages leading to "better" configurations, as required by
different tasks and problems, the notion of computational economy is needed. Such an
economy would define the costs of physical computing resources and data transfer
that actors would need to take into account when forming assemblages – or larger
computational units. Moreover, in order to describe such an economy, notions of ac-
tors’ location, mobility and execution context should be defined in a way that could
be accessed and reasoned by the actors themselves. This requires an extension of
the otherwise location-transparent actor model with a global yet dynamic topological
structure that can be accessed and modified by actors. Recall that a topological struc-
ture is a necessary component of the open-ended decentralized computing model,
allowing the evolution and self-organization of message-passing systems (see Sec-
tion 4.5.3). Here we discuss an economic extension of the actor model proposed by
Agha and Jamali (1999) which makes use of the topological structure and greatly
enhances the fluidity of the model, taking into account the pragmatics of real-world
computing and distributed systems. The proposed extension defines the following
important additional components:

i. Naming scheme. Since actors can migrate, their addresses should include loca-
tion information in the form of h.a, where a is the globally unique identifier
and h is the node at which it resides2. This makes the naming scheme in the
actor model somewhat similar to the Universal Resource Identifier (Berners-
Lee, Fielding, and Masinter, 2005). Furthermore, the naming scheme should
support referencing ensembles or groups of actors in a pattern-based way in
order to be able to access new services and to know when old services become
unavailable (see Figure 5.3a). This enables roles to be defined for agents and
to be addresssed, rather than naming individual agents which, in a dynamic
system, may migrate, multiply or get destroyed.

ii. Economic mechanism deals with the resource allocation in a multi-agent system

2Akka actor framework (http://akka.io used for software implementation described in Chapter 6)

http://akka.io

5.1. Actor model and framework 125

where agents and nodes are mobile, independent and have a certain notion of
"choice" in their actions. On behalf of an agent it would involve a selection
of computational tasks to perform; on behalf of a node, selections of agents
which are allowed to use its resources. For this end, the notion of the global
currency unit (GCU) is used in order to establish a basis for comparison between
different offers for computational resources on behalf of nodes and demands
for different computational tasks on behalf of agents. Therefore, the semantics of
resource bounded agents is proposed, which constitutes the basis of the economic
mechanism, where Tres(a,h) is a function that represents a contract between an
agent and a node hosting it and determines the cost of computation (whether
in GCUs or otherwise). Note that such a contract is a result of negotiations
between agent and a node, considering that costs of computational capacities
and demands can vary over time.

iii. Customizable execution contexts involves a technique of computational reflection
(Figure 5.3b) which enables individual actors to have a continuous interaction
with their environment to determine available resources, relate to their own
state, search for and request additional resources and by that provide evolv-
ing resource consumption strategies (Venkatasubramanian and Talcott, 1995).
These are needed for an agent to specify requirements for negotiation with a
hosting node, besides the bare estimation of computational resource require-
ments – e.g. programming languages, library dependencies, hardware compo-
nents, etc.

iv. Coordination and interaction protocols. The power of the actor model comes
from the exploitation of parallelism, distribution and mobility in ensembles of
agents. It promises orders of magnitude greater computational abilities than
that of individual actors, which are nothing more than conventional sequen-
tial programs. As each problem-solving agent possesses only an incomplete
local view of the system and limited computational power, it must coordinate
with other agents in order to achieve coherent and globally viable solutions.
Since in the actor model there is no global coordinating actor, it has to happen
from the bottom-up via synchronization, coherence and functional coordina-
tion – the process of synthetic cognitive development. In order to provide a
minimal basis for coordination in a computational medium such as an actor
system, interaction protocols and policies have to be in place (see Figure 5.3c).
Apart from functional coordination, interaction policies enable the system to
deal with failures, which is the norm rather than the exception in distributed
and decentralized systems.

These extensions of an actor model are components of what was called decen-
tralized IT governance in Box 4.1 and are attempts to address a key challenge in
multi-agent systems and distributed artificial intelligence research and practice –
the ability to coordinate decentralized agent ensembles. Apart from actor mobil-
ity and economy, fluid topology is most importantly required for computational
implementation of concepts of progressive determination (Section 3.2.4), synthetic
cognitive development (Section 3.3.3) and stigmergic computing (Section 4.5). As
propounded by the model of open-ended decentralized computing, the fluid topol-
ogy is provided by integrating the message-passing framework of the actor model
to graph computing.

126 Chapter 5. Towards architecture for open-ended decentralized computing

(A) A car assembly factory. The assembly
sends requests to actor spaces, whose mem-

bership may dynamically change.

(B) Computational reflection – actors have
formal representation of their own applica-
tions; systems (nodes) have formal represen-
tation of their computational resources and
contexts; based on this they can establish a

communication.

(C) A distributed system consists of a set of
components carrying out local computations
and interacting in accordance with a set of

policies.

FIGURE 5.3: Extension of the actor model with resource model and
economy. Adapted from Agha and Jamali (1999).

5.2 Graph computing

Graph computing is a quickly developing new paradigm of computing which lever-
ages network science and graph theory (see Section 2.2.4) to represent data, pro-
grams and their interactions in distributed computing environments. It is a large set
of technologies and a way of modelling the world in terms of entities (nodes) and
their relations (semantic or analogous associations, causality, information and con-
trol flows and more). The graph computing field is very diverse and evolves quickly
by featuring new and augmented ways to computing on theoretical and practical
levels. In this section we introduce and discuss several aspects of graph computing
directly relevant to the implementation of open-ended decentralized computation
model.

5.2.1 Graph databases

The first large scale application of graph computing technologies appeared in the
data management field in the form of graph databases. This is due to many interre-
lated reasons, but perhaps most importantly to the enormous global economic im-
pact of data management technologies in today’s society. Contemporary commercial
graph databases3, utilizing an idea that real world systems and data about them can
be represented in a graph form (Rodriguez, 2017), was conceived in 1999 as a solu-
tion to the difficulties of legacy data management technologies for coping with the
increasing amounts, volatility and analytic requirements of the IT industry (Robin-
son, Weber, and Eifrem, 2015). By 2017, many large data management technology

3Neo4j, https://neo4j.com/

https://neo4j.com/

5.2. Graph computing 127

and infrastructure providers4 had added graph database offerings to their portfo-
lio, resulting in mainstream adoption. The field has a huge potential for growth,
considering the ever growing demands for scale, speed, data analytics and security
of increasingly decentralized global information systems. It turns out that graph
database technology excels in at least three areas largely affected by the trends of
industry requirements: exploiting information encoded in relations between data
points, managing inconsistent data and dealing with high velocity and dynamics.

A good image for discussing graph databases and computing is the Semantic
web (Berners-Lee, Hendler, and Lassila, 2001; Easley and Kleinberg, 2010; Shad-
bolt, Berners-Lee, and Hall, 2006), which consists of documents, servers, web sites,
programs and data points related in a disorderly way among themselves via hyper-
links. It is really an integrated data structure, albeit decentralized on a huge scale,
without a single entry point, allowing every part to be changed and connected or
disconnected at will without a mechanism that would enforce its global consistency.
First, observe that it is a largely irregular graph structure – a "giant global graph"
(Berners-Lee, 2007). Second, it is based on a family of well-defined graph data mod-
els, such as the resource description framework (RDF) and querying languages, such
as SPARQL (Cyganiak et al., 2014; Harris, Seaborne, and Prud’hommeaux, 2013). In
order to provide the ability to execute SPARQL queries on the RDF modelled data
structure(s), there needs to be a server with persistent storage of RDF triples and
an interface for accessing it – which is a type of graph database5. Another data
model for representing linked data, developed almost at the same time as RDF, is
the labelled property graph (introduced in Section 2.2.4). Unlike RDF, the goal of
the property graph was not so much to exchange or publish data, but rather about
efficient storage and fast querying (Barrasa, 2016). Historically therefore, these two
graph data models took somewhat different paths of development which are still
conceptually close (e.g. almost all property graph-based graph databases can store
RDF and allow SPARAL querying)6.

Graph databases are conceptually very different from the data management tech-
nologies which reigned in the 20th century – relational database management sys-
tems (RDBMS). It is worth articulating this difference more concretely in order to
appreciate the paradigm shift. RDBMS provide so called ACID guarantees:

i. atomicity – all operations in a transaction must succeed or every operation is
rolled back;

ii. consistency – transactions cannot violate declared system integrity constraints;

iii. isolation – concurrent transactions must produce independent results;

iv. durability – results of applying a transaction are permanent, even in the pres-
ence of failures.

Graph databases, as well as other NoSQL databases (Madison et al., 2015), pro-
vide much less strict BASE guarantees:

i. basic availability – the datastore appears to work most of the time;

4(1) IBM Graph; (2) Microsof Azure Cosmos DB; (3) Oracle Spacial and Graph; (4) Amazon Nep-
tune; (5) Datastax Enterprise Graph; (6) and many more.

5See W3C wiki page listing "large tripple stores for a non-exhaustive list.
6Lately there are attempts to bridge the two graph data models and databases research – see the

announcement of W3C Workshop on web Standardization for Graph Data in March 2019.

https://www.ibm.com/be-en/marketplace/graph
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://www.datastax.com/products/datastax-enterprise-graph
https://www.predictiveanalyticstoday.com/top-graph-databases/
https://www.w3.org/wiki/LargeTripleStores
https://www.w3.org/Data/events/data-ws-2019/index.html

128 Chapter 5. Towards architecture for open-ended decentralized computing

ii. soft-state – they do not have to be write-consistent nor do replicas have to be
consistent all the time;

iii. eventual consistency – datastores exhibit consistency at some (later) point.

Clearly, BASE requirements are much softer than ACID and that allows effective
handling of the CAP theorem7 of distributed data management, which states that
when data is not localized in one server, one has to choose between availability and
consistency because both are not available at the same time (Robinson, Weber, and
Eifrem, 2015). Note that this does not prevent system developers from enforcing
stricter properties via high level software design – something that is often needed
for business logic.

Related to the image of the semantic web as a graph database in the above sense,
consider the global brain (see Section 2.1.3), a human brain or a neural-network-
like implementation of artificial general intelligence from the same perspective8. All
these systems hold dynamic data in different forms, which is globally inconsistent
and most probably not even eventually consistent, yet are uninterruptedly used (i.e.
queried) for reasoning and decision making in concrete and time-critical situations.
Inconsistency of a data structure means that two perfectly identical queries may pro-
duce different results. At least partially due to this, the discussion about graph com-
puting is shallow without considering the languages and mechanisms of querying
data – graph traversals.

5.2.2 Graph traversals

Graph traversal is a systematic method of exploring vertices and edges in a graph.
Traversals are represented using special purpose graph traversal languages which for-
malize an abstract description of a legal path through a graph. Graph traversing
is then a process of visiting (checking, updating or modifying) vertices and links
of a graph, based on the imperatively defined constraints in this language by a user
(Rodriguez, 2008a). It is different from the notion of graph pattern matching which
is another form of querying a graph database with declarative statements. This is
an important difference. Graph pattern matching, in line with the long established
data querying model, returns a result set that binds variables to values in a database
as constrained by the logic of the query. Examples of such languages are SQL9,
SPARQL10 and Cypher11. In graph traversal model, the logic of query is encapsu-
lated into a program (traverser) which then walks the graph according to the formu-
lated constraints. The result of a traversal are graph locations (vertexes and edges),

7CAP theorem, formulated by Eric Brewer, states that web services (which are the special case of
a decentralized system) cannot simultaneously ensure all three properties: consistency (i.e. the client
perceives that a set of operations has occurred all at once), availability (i.e. every operation must
terminate in an intended response) and partition tolerance (i.e. operations will complete, even if
individual components are unavailable) (Pritchett, 2008).

8It can be argued that data management technology relates only to symbolic data and does not
do any good when dealing with sub-symbolic representations, which arguably are needed for neural
networks. However, it has been shown that symbolic representation of a labelled property graph can
be reduced to an undirected graph without losing information (Rodriguez, 2008b) and that the precise
meaning of every link in a graph depends on its neighbouring linking patterns (Rodriguez, Pepe, and
Shinavier, 2010).

9https://en.wikipedia.org/wiki/SQL
10https://en.wikipedia.org/wiki/SPARQL
11https://neo4j.com/docs/cypher-manual/current/

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SPARQL
https://neo4j.com/docs/cypher-manual/current/

5.2. Graph computing 129

their properties and any data structures aggregated by visiting them. Gremlin12

graph traversal language supports both graph pattern matching and graph traver-
sal models, but the latter is its most important property and distinguishing feature.
Furthermore, apart from the ability to formalize graph traversals, Gremlin is also a
virtual machine, distributed execution model and a programming language that can
be leveraged in general-purpose programming (Rodriguez, 2015b; Rodriguez and
Bollen, 2007). Concretely, it can be:

i. embedded in any host programming language, with currently available drivers
for Java, Python, JavaScript and others13;

ii. extended by users wishing to leverage the terminology of their usage domain14;

iii. optimized via an extensible set of compile-time rewrite rules15;

iv. executed within a multi-machine compute cluster or a parallel architecture in
distributed manner;

v. evaluated using a variety of graph traversal models, including depth-first,
breath-first or hybrid ordering;

vi. represented within the graph itself via the theoretical existence of the Univer-
sal Gremlin Machine, effectively erasing the distinction between data and pro-
gram, since both can be represented in the same structure.

Gremlin is therefore both a major technology of the graph-computing landscape
– which is still somewhat "under the radar" (Russell, 2019) – and an actualization
of the new and still consolidating branch of computer science – graph computing the-
ory16. The conceptual aspects of graph computing, as represented by Gremlin, are of
particular interest with respect to the open-ended decentralized computing model.
It goes well beyond database management systems and graph databases, which can
be considered "only" the first commercial application of graph computing.

Let us return to the example of the Semantic web and the internet at large to il-
lustrate relevant conceptual aspects of graph computing. First, note that while the
notion of the web as a graph still evokes an image of the static structure of nodes
– web pages hosted on locationally stable servers – linked with edges (Kleinberg et
al., 1999), the internet as a whole has long evolved towards the dynamic network
of interacting processes: web browsers as virtual machines running asynchronous
JavaScript programs, mobile applications and cyber-physical systems interacting via
web APIs17 and the like. Furthermore, currently emerging technologies of the de-
centralized web, such as IPFS18, the Safe Network19, fog and edge computing (Matt,
2018), blockchain (Box 4.1) based decentralized smart contract platforms20 and many
more, promise to altogether decouple content, data and executable code from any
physical location, server or client implementation. Such a dynamic network of in-
teracting processes is best conceived as a decentralized computing infrastructure in

12https://tinkerpop.apache.org/gremlin.html
13https://tinkerpop.apache.org/query-languages.
14https://www.datastax.com/dev/blog/developing-a-domain-specific-language-in-gremlin.
15http://tinkerpop.apache.org/docs/current/reference/traversalstrategy.
16M. Rodriguez, personal communication, December 5, 2016 and Anadiotis (2018)
17https://en.wikipedia.org/wiki/web_API
18InterPlanetary File System (IPFS)
19https://safenetwork.tech/
20Projects like Ethereum, EOS, Holochain, NEO develop systems which allow loosely and dynami-

cally networked computers to become one virtual computing machine without single point of access
or failure.

https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/##query-languages
https://www.datastax.com/dev/blog/developing-a-domain-specific-language-in-gremlin
http://tinkerpop.apache.org/docs/current/reference/##traversalstrategy
https://en.wikipedia.org/wiki/web_API
https://ipfs.io/
https://safenetwork.tech/
https://www.ethereum.org/
https://eos.io/
https://holochain.org/
https://neo.org/

130 Chapter 5. Towards architecture for open-ended decentralized computing

terms of interactive computation (see Section 4.2.5), actor model (Section 5.1) and
an ecosystem of emergent computation graphs (see Figure 4.5). With this image we
turn to selected conceptual aspects of graph computing that are instrumental for the
architecture of open-ended decentralized computing.

5.2.3 Vertex-centric spreading activation

When a person, program or a mobile application "queries" the web for information,
one does not have access to all information residing in all other nodes – servers,
web pages, programs or mobile applications – at once. One does not even know, or
need to know, how many other nodes exist in the network. Instead, one accesses
the network via its local node and follows from link to node to another link selec-
tively and iteratively until reaching the desired node or content. This is a primitive
example of vertex-centric graph traversal where each traversal has to start from an
existing node in the graph and traverse through its neighbouring links. This opera-
tion can be written formally in imperative graph traversal language. The traverser
– a program encapsulating logic of the traversal – walks through nodes and links,
checks their properties and dynamically decides its next step. This decision is dic-
tated by its own logic, local information of the node or edge it is on, and path history
– information collected during the traversal (McCune, Weninger, and Madey, 2015;
Rodriguez, 2008a). An example of an actual Gremlin traversal is depicted in Figure
5.4.

(A)

(B)

FIGURE 5.4: Graph traversal as an expression 5.4a in Gremlin and as
a graph structure 5.4b. Both describe a legal path in a road map graph
(Figure 5.5). 5.4b is a compact simplified representation. For a fully
executable graph representation of a traversal see Rodriguez (2015b).

The expression of Figure 5.4 instructs that the traversal starts at vertex V (7) and
performs four steps, if such a legal path exists in the graph: (1) travel via edges
dirtRoad (2) to all vertices named outpost, (3) then travel via edges bridge (4) to vertices
named town. If a legal path exists in the graph that matches this description, that is, if
a traverser can actually walk through such a path when landed on the starting vertex
V (7) of the graph depicted in Figure 5.5, then the result returned by it are vertices
of the graph that represent all reached towns. Note again that the actual result of the
operation depends not only on the logic of expression, but also on the structure of
the graph that is being traversed.

When applied to the graph representing a simple road map, depicted in Fig-
ure 5.5, the traversal of Figure 5.4 returns three vertices: V (65), V (66) and V (67),
which represent towns in the graph and the halting condition of the traversal ex-
pression (i.e. last step). When faced with multiple legal paths (roads) in the graph,
traversers spread, or branch, and walk all possible legal paths simultaneously. This

5.2. Graph computing 131

FIGURE 5.5: Graphical depiction of vertex-centric spreading activation of
the Gremlin expression of Figure 5.4. Numbers on traversers correspond
to the Gremlin expression steps of Figure 5.4a. Adapted from Rodriguez

(2015a) with changes.

constitutes a vertex-centric, semantically constrained spreading activation (see Sec-
tion 2.3.1) through the graph. More formally, a traversal expresses a path algebra
expression, according to which a traverser walks through the graph structure and
returns all encountered legal paths (Rodriguez, 2008a; Rodriguez and Neubauer,
2011; Rodriguez and Shinavier, 2010).

Importantly, traversers can mutate a graph when walking it – i.e. change prop-
erties (e.g. dirtRoad to pavedRoad), create new vertices (e.g. outposts) or connect
them via edges (e.g. build bridges). Note also that more than one traverser can ex-
ecute their traversals (with the same or different expressions) at the same time on
the graph asynchronously – which is both allowed by the graph computing model
as well as currently available implementations of graph engines (see Section 5.2.1).
For example, a traversal can be written which, executed as one sequential or many
asynchronous traversers, mutates the structure of a graph from an initial single-
dimensional line to a two-dimensional small-world graph (see Figure 5.6). Depend-
ing on the graph domain, the same can be generalized to any number of dimensions.

(A) Small world graph traversal in Gremlin, which
results in tranformations of graph structure as

shown below.
(B) Graph geodesic measures of graphs depicted

below.

(C) Graph transformations resulting from running traversal of Figure 5.6a on graphs from
left to right. Adapted from Rodriguez (2015a).

FIGURE 5.6: Folding a line into small world graph via graph traversal.

132 Chapter 5. Towards architecture for open-ended decentralized computing

In this way, graph computing can support the creation and navigation of metasta-
bility landscapes (Section 3.2.3 and Figure 3.9), stigmergic computing (Section 4.5)
and processes of progressive determination (Section 3.2.4), which are instrumental
for implementing the open-ended decentralized computing model and the scheme
of synthetic cognitive development.

5.2.4 Navigating infinite data structures

Recall that open computing (Section 4.2.5) is described in terms of the following
properties:

i. readability of inputs and outputs is determined during the computational pro-
cess and not a priori;

ii. the computation graph, at least partially, is determined by self-organization
happening during computation, rather than being explicitly settable by a user
a priori;

iii. it may be unique and non-repeatable;

iv. it should be possible to construct such a system physically;

v. the computation process may never halt (i.e. can be unbounded in time) yet
it should be possible to extract partial or incomplete results at any chosen mo-
ment.

Let us see how graph computing allows these requirements to be implemented.

Readability requires that the input of computation has to be determinable and
representable in a finite and reasonably compact data structure which can be passed
into a computer program. This is problematic due to the sheer volume and velocity
of data with which information technologies are currently dealing. Open comput-
ing conceives processes that can take as input data structures which are not com-
pletely defined at the start and it is therefore able to operate on the unknown. Like-
wise, vertex-centric spreading activation on graphs allows programs to operate on
undetermined, incomplete, infinite and changing data structures21.

Graph computing is flexible and non-repeatable since graph traversals may re-
turn different results when executed at different times. Note again the difference
between graph traversal, which is the logic of expression, and traverser, which is the
actual process that executes it. First, traversers that start from different vertices will
obviously walk different paths. Second, since a graph may change during the exe-
cution of a traversal (due to mutations caused by other traversals), traversers that
are initiated at different moments may take different legal paths in the graph, even
if started from the same locality. Third, in graph computing, the computation graph
(i.e. the legal path taken in the graph) is a result of the "join" between the description
of graph traversal and graph structure that is not defined before the operation of
"joining". Fourth, it allows a time limit to be set for a traversal, this way effectively
"cheating" the halting problem (see discussion on page 88) and returning different re-
sults as a by-product. The two latter points deserve a more in-depth discussion.

21Issues caused by huge volumes and velocities of data are also dealt by the emerging field of stream
computing (Assunção, Veith, and Buyya, 2018; Joseph, E.A., and Chandran, 2015) which is based on
processing flows of data rather than complete and static data structures.

5.2. Graph computing 133

The mechanics of a graph traverser, which gives rise to semantically constrained
spreading activation, is explained by the concept of grammar-based random walker
in semantic network developed by Rodriguez (2008a) which considers representing
both graph and traversal in terms of grammar. A grammar Ψ is equivalent to an
expression of a graph traversal (see Figure 5.4), which can also be represented as a
graph (see Figure 5.5). A semantic network is a graphGn. Ψ andGn are defined with
respect to their ontologies, which are of course related – since grammar ontology has
to be able to define a legal path in a graph that respects network ontology (see Figure
5.7).

FIGURE 5.7: The gram-
mar based random
walker architecture.
Adapted from Ro-

driguez (2008a).

5.2.5 Interaction of subjective perspectives

The result of a particular traverser T is a sub-graph Gψ which is a special kind of
"join" of Gn and Ψ (see Figure 5.8).

FIGURE 5.8: Gψ as the
Ψ-correct subset ("join")
of Gn. Adapted from
Rodriguez (2008a) with

changes.

An important take-away is that Gψ cannot be achieved by Gn nor Ψ alone, but
only by their interaction. Consider a conceptual interpretation of such interaction in
the context of Chapter 2. In this sense, Ψ represents a "subjective view-point" of an
intelligent agent (traverser T) which is making sense of its sensory space Gn. The
result of this computation is an agent’s subjective perspective of an environment.
Different agents in a population (T ∈ π) can have different view-points (traversal
expressions as well as starting locations) resulting in different models GψT of the sen-
sory space, environment or reality. This interpretation shows how graph computing
can be leveraged to account for the aspects of model building discussed in Section
2.2.3 and ecological rationality.

Recall that ecological rationality (Section 2.3.2) is a match between mind and en-
vironment rather than an ideal human reasoning and probabilistic inference. The re-
alization of the ecological rationality principle in artificial intelligence is proposed by
Wang (2005) in terms of the Non-Axiomatic Reasoning System (NARS). NARS is based
on experience-grounded semantics, in which truth and meaning are defined not as
objective notions, but according to a system’s experience. Experience can substan-
tially differ among systems, even if they operate in the same framework, and there-
fore interaction between subsystems in the context of a decentralized framework
is the only valid way to align subjective meanings. In this way, interaction among
subsystems gives rise to system-level meanings. Besides the concept of ecological

134 Chapter 5. Towards architecture for open-ended decentralized computing

rationality, NARS is associated with many concepts related to open-ended intelli-
gence and open-ended decentralized computing, including enaction (Section 2.3.7),
sense-making (Section 2.3.8), interactive computation (Section 4.2.5) and more.

Rodriguez and Geldart (2008) and Rodriguez and Neubauer (2011) have devel-
oped evidential path logic and path algebra for implementing non-axiomatic eviden-
tial logic with grammar walk algorithms on multi-relational graphs. The evidential
path logic enables reasoning using arbitrary, partial and contradictory knowledge
while supporting a tractable approximate reasoning process. Furthermore, these al-
gorithms can be executed considering available resources and only on those areas
of the graph (i.e. sub-graphs) where they are deemed necessary. This way, graph
computing allows stigmergic computing to be implemented by concurrently execut-
ing multiple inferences in the same framework where graph traversers with possi-
bly different traversing logic interact directly or indirectly while walking the same
graph.

5.2.6 Implicit auto-approximation

The interaction ("join") betweenGn and Ψ, while being well defined mathematically,
computationally is a timebound process, having a certain time that it takes for a tra-
verser T to walk a graph. Since the halting condition of a traverser is defined by the
interaction of graph Gn and traversal grammar Ψ, while the structure of the graph
is subject to mutations that can be non-deterministic, there is no strict general guar-
antee that a traverser has a finite execution time. Therefore, in order to deal with
the "halting problem" (see page 88) graph computing allows a cut-off threshold to
be set. If the time of execution reaches this threshold, the traverser is stopped and its
current state is returned as its result, even if it does not comply with the halting cri-
teria defined by the grammar Ψ. A state of traversal is the set of vertices and edges
at which the traverser is located at the moment, plus all accumulated data struc-
tures if defined by the grammar. While this may appear as a trick in order to cheat
the "halting problem", actually it is an important property of graph computing. In
optimization problems, this property provides the capability of auto-approximation,
where criteria of approximation can be defined during execution time, depending
on the context of the computation.

Auto-approximation is the computational method for finding out approximate
solutions to problems (Shang and Yu, 2014) without knowing or referring to exact
solutions in the first place. Very often – especially in machine learning, artificial in-
telligence, embodied robotics and "big data" analytics – the cost of exact solutions to
problems are neither practical nor feasible or even desirable. When these problems
are represented in terms of graph computing, reaching an exact solution may mean
executing long traversals where traversers may walk hundreds of millions of ver-
tices and billions of edges. Approximate solutions, which often are good enough for
a task at hand, may require orders of magnitude less steps to complete. For exam-
ple, the PageRank (Page et al., 1999), which is a popular graph centrality measure,
is defined recursively, where a vertex is central if it is connected to other central ver-
tices. In order to calculate the exact PageRank measure of each vertex in a graph, all
vertices should be traversed, which, in the case of very large graphs (e.g. internet)
is prohibitively computationally expensive. Yet, most often, what is needed from
graph centrality measures is the ranking of vertices by their importance in the net-
work rather than exact measure. Many fewer iterations may be needed to achieve

5.2. Graph computing 135

"good enough" measures for that purpose (Rodriguez, 2015b).

Auto-approximation concretely realizes the principle of ecological rationality in-
ternally to computation. Since what is rational can be determined only by consid-
ering the environmental context and situation, it may make more sense to achieve
"good-enough" approximate results in less time than exact results in a much longer
time – and that could be a matter of survival and further development for an intelli-
gent agent. I consider this property consequential for applications related to artificial
general intelligence.

5.2.7 Decentralized indexing

Indexing is an important technical aspect of graph computing and the operation of
decentralized networks in general. Current practical organization of the web (se-
mantic or not) is most instructive in this sense, considering especially that it is an
evolving rather than a priori designed system. Most people using the web today
access it through search engines, which are on-line services allowing users to search
content that is scattered through the network (or graph) of servers and webpages
using keywords, natural language expressions or structured queries. Since the web
is decentralized and open, nodes and links can be created, deleted or have their con-
tent modified in an asynchronous manner. Search engines allow navigation through
this dynamic "giant global graph" by employing two main components – the web
crawler and an index:

• Web crawler (also called bot or robot) is a special program which autonomously
browses the web with the help of hyper-links and sends the information about
each visited page to the search engine. In graph computing terms a web crawler
is equivalent to a graph traverser walking the graph with a specific graph
traversal expression.

• Index is a central database where all information from web crawlers is col-
lected, indexed and stored for querying. All search engines then have a user
interface – usually a webpage – through which users can query the database
by content of interest and then follow provided hyper-links. Modern search
engines also have APIs, allowing their database to be queried by other nodes
in the graph without human intervention22.

Qualitatively speaking, search engines and their indexes are also nodes in the
web graph, alongside other servers, programs and devices. Yet they have two no-
table quantitative differences: (1) a much larger degree of connectivity to other nodes
(which is the whole point of search engines – i.e. providing a gateway to other nodes)
and (2) more computing resources (storage space and processing power). These are
the supernodes. In network science and graph theory, a supernode is a vertex of a
graph that has a disproportionally large number of connections to other vertices
(Rodriguez, 2012). The existence of supernodes in real world graphs is related to the
empirical phenomenon having many names – Paretto principle, power-law distribu-
tion, scale-free network – carrying the same meaning: that the influence in most real
complex networks is not equally distributed among all participants. Moreover, the
number of nodes with certain influence is inversely related to their influence values.
In other words, most of the nodes in the complex network are unimportant and only

22e.g. Google Custom Search API, Bing web Search API or Twitter Search API.

https://developers.google.com/custom-search/v1/overview?csw=1
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.html

136 Chapter 5. Towards architecture for open-ended decentralized computing

a few are very influential (Barabasi and Frangos, 2002; Kshemkalyani and Singhal,
2008).

Relating notions of index in graph computing and supernode in network science
allows distinctions to be formulated between centralized (or global), distributed and
decentralized indexes, as pictured in Figure 5.9a:

i. Centralized, global or graph-centric index contains information about all vertices
or edges in the graph, and therefore gives rise to a centralized network struc-
ture by providing a routing path for all nodes to all other nodes. Note, how-
ever, that global indices can index only a certain chosen aspect of a complex
graph structure (e.g. a certain property type of all vertices or edges), and there-
fore are not "omniscient" about the graph, but represent a single global per-
spective of a chosen aspect.

ii. An index which operates as a global one yet is located in several tightly coop-
erating nodes is distributed, giving rise to a distributed network structure. All
these nodes represent the same global perspective of a graph. A notable ex-
ample of such an index is the distributed hash table (DHT) technology, used for
global indexing of peer-to-peer networks without changing their architectural
structure.

iii. Decentralized, local or vertex-centric indices are the ones that index only the local
properties (e.g. edges) of a node. Obviously, this type of indexing gives rise to
decentralized networks and is used in random walk searches (Kshemkalyani
and Singhal, 2008; Sandberg, 2005).

(A) Centralized, dis-
tributed and decentralized
indices as network struc-
tures, (see also Figure 4.4c

on page 95).

(B) Graph-centric and
vertex-centric indices

(Rodriguez, 2016b).

FIGURE 5.9: Graph-centric and vertex-centric graph indexing gives
rise to centralized, distributed and decentralized network structures.

From the standpoint of graph computing, vertex-centric indexes allow a link for
further traversal to be chosen very quickly. From the standpoint of network science,
supernodes make graphs more connected – allowing each node to reach each other
via shorter paths and less time. Scale-free graphs of huge size are known to be very
well connected – e.g. the diameter of the world wide web subgraph with 800 million
nodes is only 19, whereas human social networks of billions of nodes are believed
to have a diameter of about 6 (Albert, Jeong, and Barabasi, 2000). Recall that the
diameter of a graph is the longest path without cycles that can be found in it23. In the

23 More precisely, graph diameter is the longest shortest path in a graph, or the distance between the
two furthest away nodes (Barabasi, 2013).

5.2. Graph computing 137

context of internet and the web, better connectivity intuitively, while somewhat sim-
plistically, means better accessibility to information for every participant. Indexing
therefore can be seen as a way to introduce specialized supernodes which effectively
reduce the diameter of a graph and make information propagation between nodes
more efficient. Another aspect of indices in general and search engines in particular
is that they provide a mapping between node content and address for routing pur-
poses. Actually, modern search engines introduce a kind of content addressing into
the web – often one does not even notice the actual URL of a server or webpage one
follows from a search engine’s page.

In short, supernodes allow for more efficient navigation in the graph (Hadaller,
Regan, and Russell, 2005). Furthermore, as Albert, Jeong, and Barabasi (2000) show,
the existence of supernodes in the graph makes it more resistant to random attacks,
which arguably is one of the reasons why internet is so robust despite the unrelia-
bility of each individual link. On the other hand, the existence of supernodes also
has drawbacks: they make a network more vulnerable to targeted attacks (ibid.).
Also, in graph computing, supernodes may lead to performance problems due to
large number of traversers checking all connections and clogging the system’s re-
sources. Finally, from the practical perspective of governing decentralized systems,
such as internet, the web or economic networks, supernodes may introduce a self-
reinforcing inequality and confirmation biases and reduce the diversity needed for
healthy evolution of a system. "The supernode problem" (Rodriguez, 2012) therefore
provides a network-scientific and graph-theoretic perspective to the more general
and conceptual problem of self-organizing complex adaptive systems. The relative
proportion of supernodes in such systems may crucially affect their performance in
different environmental situations24.

On a conceptual level, there are no clear-cut boundaries between centralized,
decentralized and distributed indexes, as they represent a continuum between cen-
tralization and decentralization, as discussed in Section 4.3. Modern computing sys-
tems provide implementations of all types of indexes25. Open-ended decentralized
computing, however, requires a fluid indexing scheme, where global indices and
centralized network structures construct and dissolve themselves organically and
constantly as a result of bottom-up self-organization. Therefore, open computing
emphasizes the process of how indices and network structures morph to each other
rather than their static forms.

The dynamics of the web illustrates such self-organization: all search indexes
through the history of internet26 have emerged bottom-up and grew to the domi-
nance and supernode status without an initial preferential position. This exempli-
fies how every node in a network potentially can become a supernode, provided it
has computational resources to traverse the graph and store collected information.
Likewise, nodes in a graph computing context can autonomously grow centralized
indices by issuing graph traversals which walk the whole graph resulting in global
self-organized structure, which would influence overall dynamics of a graph.

24"A relative proportion of supernodes and their importance" in a network can be measured by the
power-law exponent (Easley and Kleinberg, 2010)

25E.g. actor framework akka.io, as much decentralized as it is, provides a hierarchical addressing of
all actors in an actor system, which is a kind of centralized index. In graph databases world, DataStax
Enterprise Graph supports both graph-centric and vertex-centric indexing.

26W3Catalog, Infoseek, Yahoo, Altavista, Google, etc.

https://akka.io/

138 Chapter 5. Towards architecture for open-ended decentralized computing

5.3 Architecture for open-ended computing

The architecture for open-ended decentralized computing unites the actor model
(Section 5.1) and graph computing (Section 5.2) into one framework. The actor
model enables massively scalable implementation of a population of independent
and heterogeneous computational processes, and their custom behaviours. Actors
can have wildly different computational complexities and resource requirements.
Computational processes of actors communicate with each other by passing mes-
sages which encapsulate commands and data structures. The totality of all traces
of messages constitute a dynamic message-passing graph – a shared data structure
– where every actor is also a vertex. Graph computing enables actors to access and
change this graph by executing vertex-centric graph traversals based on their unique
perspectives and custom behaviours. The message-passing graph, while best rea-
soned about in terms of a logical structure, is actually scattered across local memo-
ries of actors and does not constitute a single object. Therefore, it is not accessible
directly, but only via the fact that an actor which accesses it is itself a part of the
graph and can issue traversals from its location and via its links with immediate
neighbours. Most importantly, the notion of message and graph traversal are dif-
ferent aspects of the same communication event. This fact alone unites the actor
model and graph computing into one framework by allowing actors to specify le-
gal paths of messages. In this way messages (i.e. information and control flow)
propagate not randomly or directly, but depending on internal logic and the local
graph structures, which develop and change because of other messages. Recall that
the actor model allows the operation of the framework to be radically decentral-
ized and asynchronous, while graph computing allows for local computations. The
framework enables the bottom-up emergence of computation graphs to be realized
as persistent assemblages (sub-graphs) of computational processes and, in general,
stigmergic computing and progressive determination. This is a high-level descrip-
tion of the architecture of open-ended decentralized computing in a nutshell. Figure
5.10 depicts the architecture by showing the actor system (5.10a) and graph comput-
ing engine (5.10b) as integrated aspects. Each named component of the architecture
is described further.

All computational components are implemented both as actors and as graph ver-
tices which allows to leverage both flexibility and asynchrony of the actor model
of computation and indirect communication via evolving shared data structure en-
abled by graph computing. There are two generic types of component in the archi-
tecture, which can be further specified based on the domain model requirements:
data and processes. These components are specified by the architecture because they
are fundamental elements of computing27:

• Agents are actors which encapsulate elementary computational processes. They
are also vertices. Every process pi implements a function fi which takes data
object ox as input and produces data object oy as output (see Section 4.5.1).
Note that an elementary computational process is necessarily sequential, in-
divisible and represents the lower-most scale of the scalable structure of a
computation graph (see Figure 4.6). As actors, agents can send and receive

27Note that graph computing allows both graph traversals (which are processes) and data to be rep-
resented within the same graph structure (Rodriguez, 2016a), in this way blurring boundaries between
data and process. The architecture of open-ended decentralized computing, as formulated currently,
does not benefit from this option, but it is an interesting possibility for the future.

5.3. Architecture for open-ended computing 139

(A) Actor system.

(B) Graph computing
engine. Adapted from

Rodriguez (2016b).

FIGURE 5.10: Open-ended decentralized computing architecture.

messages from other agents and react to them. As vertices, they issue graph
traversals for exploring their neighbourhood structures.

• Data objects are actors which encapsulate data and are also vertices of a graph.
While agents can implement any computational process, data objects imple-
ment a very specialized function, which can output stored data or some de-
scription of it if "asked"28.

Agents and data objects as vertices of the graph become linked to each other
and form a fluid network structure. This structure is neither persistent nor ephemeral,
in strict computer-scientific terms, but exists somewhere in between. The network
structure emerges from traces of message passing among actors, but in a selective
manner: not all messages leave traces and some traces can persist longer than others.
It is an important feature of open-ended decentralized computing that the network
structure is represented in a distributed manner and is an emergent phenomenon.
The emergence of the network structure is facilitated by every actor-vertex having
a local memory which holds an index of links to other actor-vertices of the system
(agents or data objects) and properties of these links. First, this means that there

28A data object can also be considered a process which implements a function with two possible
inputs and two possible outputs: e.g. if it gets input 1, it outputs data stored in its memory. If it gets
input 0 it outputs the description of the data that it holds.

140 Chapter 5. Towards architecture for open-ended decentralized computing

is no notion of global memory, where the network structure and information about
links between actor-vertices are stored. This of course means that there is no explicit
pointer to the structure and it can be accessed only via one of the actor-vertices. Sec-
ond, the fluidity of the network structure is determined by local interactions among
actor-vertices and is a result of certain "agreed-upon" or "negotiated" patterns of in-
teraction – i.e. message passing. Third, the support for graph computing via vertex-
centric graph traversals allows actors-vertices to explore the distributed network
structure beyond their immediate neighbourhoods. A traverser in the open-ended
decentralized computing system is a message which encapsulates the traversal ex-
pression and path algebra logic. When an actor receives such a message, it executes
the current traversal step and passes the expression to actors listed in its local mem-
ory which satisfy the conditions of the step. This way the message-traversal walks
a legal path in the distributed graph structure and realizes semantically constrained
spreading activation in infinite data structures (see Section 5.2.4). Note that, tech-
nically, the absence of a globally defined and explicit network structure means that
graph computing does not need to be implemented via graph databases or to use
them in any manner. This is an important aspect of the open-ended decentralized
computing model that allows it to embrace radical decentralization as its primary
architectural principle.

The mechanics of vertex-centric graph traversal over a decentralized graph struc-
ture is explicated by Figure 5.11. Figure 5.11a repeats the running example of graph
traversal expression in Gremlin while Figure 5.11b shows the mechanics of this
traversal over the decentralized graph structure composed of small data structures
localized at each vertex.

The decentralized traversal works as follows:

0. the traverser starts at the counter value of zero at the condition indicated by
step 0, which is vertex with id:7; the counter value is incremented by one: c =
c+ 1→ c = 1;

1. next, it checks if local index at vertex id:7 contains outgoing edges with label
dirtRoad, which is the condition of step 1; since three such edges exist, the tra-
verser branches and walks to vertices id:15, id:32 and id:56; the counter value
is incremented: c = c+ 1→ c = 2;

2. next, the three traversers at reached vertices id:15, id:32 and id:56 check if their
names are legal according to the condition of step 2 (i.e. that name:outpost);
since all three vertices are in legal path, counters are incremented for all three
traversers: c = c+ 1→ c = 3;

3. next, the traverser checks if local indices contain outgoing edges with label
bridge which is the condition of step 3; vertices id:15 and id:56 do not contain
such a further legal step, and therefore traversers die at these vertices; the only
remaining traverser continues from vertex id:32 by branching again to vertices
id:65, id:66 and id:67 along edges with name bridge; counters are incremented:
c = c+ 1→ c = 3;

4. next, traversers at reached vertices id:65, id:66 and id:67 check if their names
are legal according to condition of step 4 (i.e. that name:town); since all three
vertices are on the legal path, and step 4 represents the halting condition of the
traversal, the traverser is stopped and these vertices are returned as the result.

5.3. Architecture for open-ended computing 141

(A)

(B)

FIGURE 5.11: Decentralized graph traversal (5.11a) and structure
(5.11b). Vertex-centric graph traversal is implemented with grammar-
based traversers checking next legal steps in their walk against local
data structures. Traversers are then sent as messages through legal
steps, their counters incremented by one and the procedure is re-
peated at arrival vertices until there are no more legal paths in the
graph or the halting condition is met. Edges and vertices selected by

the traverser as legal local steps are marked with the green.

Note that this result is equivalent to the graph traversal illustrated by Figure 5.5.
The graph structure is created and sustained in a distributed fashion by each vertex
holding an index of its outgoing edges and their properties. This allows all graph
computing semantics and capabilities to be preserved in a completely decentralized
system based on interacting independent actors, including mutating the graph in
terms of creating new links and vertices, and changing their properties. Further
recall that all vertices are also actors and as such can implement any elementary
computational process complete in the Turing (1937) sense which can be triggered
by the traverser. A traverser, besides traversal semantics, can carry custom data
structures to be processed (read and written with changes) at any vertex – which
allows the implementation of graph algorithms that process information collected
from traversed vertices. Finally, the actor model augmented with the decentralized
graph computing allows for the emergence of assemblages of elementary processes
as higher order computational graphs and in this way realizes the self-organization
of unorganized machines in the Turing (1948) sense (see Figure 4.5).

Last, but not least, open-ended decentralized computing architecture allows the
actors’ mobility, location awareness and therefore computational economy. It is per-
fectly conceivable (yet not trivial) that a mechanism could be implemented where
actors (data objects or processes alike) can "transport" themselves to a different lo-
cation of the graph where local costs of connectivity are more favourable for the
computational process of the computational graph of the assemblage that they rep-
resent. It is also perfectly conceivable that graph traversals could be implemented

142 Chapter 5. Towards architecture for open-ended decentralized computing

which are aware of such cost constraints.

This concludes the discussion of the open-ended decentralized computing model
and architecture as a combination of the actor model of computation and graph com-
puting. Some high-level technical aspects of the architecture are discussed further,
before proceeding to the description of example implementation – the offer networks
– in Section 6.

5.3.1 Implementation guidelines

The nature of open-ended decentralized computing dictates that computing pro-
cesses cannot be directly observed or controlled from a single point in software ar-
chitecture. This contrasts with the usual practices of software development. While
radical decentralization is the main principle of the open-ended decentralized com-
puting concept and architecture, observability and influence are still required for
software built on top of this computational model to be of any practical value. There-
fore, in order to provide observability over computational processes, the software
framework based on the open-ended decentralized computing model features two
fairly separate subsystems – simulation engine and analysis engine.

• Simulation engine hosts the implementation of all aspects of open-ended de-
centralized computing: (1) heterogeneous agent’s logic, (2) actor framework,
(3) graph computing engine and persistent network topology (distributed or
otherwise).

• Monitoring and analysis engine collects information of events happening in the
network and performs on-line, off-line analysis or visualizations as required
by software design requirements.

The two subsystems communicate via events that are issued by components of
the simulation engine (actually, every actor). The granularity and type of events
are determined by each domain model and the requirements of software design.
The monitoring and analysis engine is a separate subsystem, most often physically
located on separate hardware which catches all events for storage and analysis (see
Figure 5.12).

FIGURE 5.12: Simulation and analysis engines of open-ended decentral-
ized computing architecture.

Note that very often the sheer number and velocity of events issued by the simu-
lation engine, which may host millions of asynchronously executing actors, require

5.4. Summary of the chapter 143

the monitoring and analysis engine to be of at least the same computational capacity
as the simulation engine itself.

5.4 Summary of the chapter

This chapter proposes a software architecture and further defines low level seman-
tics for realizing the computational model of open-ended decentralized computing
based on the notion of stigmergic computation. The key aspect of the architecture
is the integration of two models of computation: Actor framework and graph com-
puting. With the actor model, this integration achieves four tenets of open-ended
decentralized computing: population of independent processes with custom and
heterogeneous behaviours and ability of direct interaction between processes via
message passing. With graph computing we achieve indirect interaction via a shared
medium, fluid evolving structure of the shared medium and, finally, radical decen-
tralization via the decentralized graph traversals.

We first discuss the actor model in terms of its informal as well formal descrip-
tion. This is followed by the formulation of fundamental principle of decentral-
ized computing, involving the choice between computation and communication.
We then show the locality and mobility extensions of the model, which enable the
conception and implementation of computational economy of computational agents.
Second, we discuss the emerging field of graph computing by presenting its the-
oretical and practical aspects in terms of graph databases, graph traversals and
vertex-centric spreading activation. Then, the relative properties of graph com-
puting are presented – the ability to navigate infinite and massively scalable data
structures, interaction of subjective perspectives and computational processes, auto-
approximation and decentralized indexing. Third and finally, we demonstrate how
the two computing models integrate into one framework and provide the basis for
the emergence of computation graphs as assemblages of agents via the computa-
tional implementation of the mechanism of progressive determination.

Note that the architecture of open-ended decentralized computing provides a ba-
sis for the implementation of synthetic cognitive development processes, but does
not in any way constrain or guide the types of process and dynamics that can be
achieved by it, apart from realistic representations of a complex dynamic system
composed of history-dependent interactions of population of lower level agents.
While the architecture allows the modelling of large-scale decentralized computa-
tion, hybrid systems, social socio-economic interactions and many more, the specific
dynamics and properties of these systems will have to be implemented above the ar-
chitecture of open-ended decentralized computing and based on the chosen domain
model logics. The next Chapter 6 discusses one possible example of implementation
of a specific domain model – a decentralized non-monetary exchange.

145

Chapter 6

Offer networks: a model of
decentralized exchange

Offer networks is a work-in-progress concept of an alternative economy where het-
erogeneous and independent agents (humans, AIs and more or less simple programs
and intelligences) find, negotiate and execute locally and globally beneficial series of
hybrid exchanges of tangible and intangible goods. The initial concept was proposed
by Goertzel (2015a) in the context of a post-money economy and further explored by
Heylighen (2017) in the broader context of decentralized coordination, distributed
intelligence and global brain research. Heylighen (ibid.) also proposed an alterna-
tive name for such general system: the synergy web. Our purpose of referring to offer
networks in this thesis is mainly motivated by using it as a domain model for try-
ing out the open-ended decentralized computing architecture described in Chapter
5 in terms of an actual working code and integration of various existing software
frameworks. Nevertheless, we first introduce the economic context of offer net-
works, which is important to grasp for appreciating a case of a complex adaptive
and necessarily decentralized self-organizing system.

6.1 Economic context

Established economic theories, classical and neo-classical alike, largely understate
or ignore subjectivities and complexities inherent in how individual humans deter-
mine the value of goods and services and achieve their exchanges. Social structures
are seldom discussed behind the notion of the market as an ideal resource-allocating
mechanism in which dynamics is abstracted from the individual behaviours and
preferences of its participants (Gode and Sunder, 1993; Jackson, 2006). The ideal mar-
ket image is perfectly competitive, where all sellers and buyers are homogeneous or,
at best, categorized into large homogeneous groups. Such a market (or exchange)
is utilitarian and driven by utility maximization principles, which are objectively
definable for each group. A canonical example is the financial market, which is care-
fully stripped of any social interaction by strict regulations. Yet it is a special case
which does not apply to economic exchanges in general, nor is it a desirable model
of them.

Economic sociology, a term coined in late 19th century, is "the application of the
frames of reference, variables, and explanatory models of sociology to that complex

146 Chapter 6. Offer networks: a model of decentralized exchange

of activities which is concerned with the production, distribution, exchange, and
consumption of scarce goods and services" (Smelser and Swedberg, 2005). A cen-
tral concept in contemporary economic sociology is the embeddedness of economic
actions in concrete and ongoing systems of social relations (Granovetter, 1985) – i.e.
social networks and sub-networks. Exchange, as the mechanism of coordination of
actors and owners of resources, is the outcome of their local interactions via dynamic
social networks which evolve in time as a product of the totality of these interactions
(Johanson and Mattsson, 1994). Note that this is clearly a case of progressive deter-
mination (see Section 3.2.4). Obviously, network science plays an important role
in the research methodology of economic sociology. Markets are highly connected
complex adaptive systems and understanding them requires integration of ideas for
reasoning about network structures, strategic behaviours, feedback effects, reflexiv-
ity, and more. From the perspective of open-ended distributed computing, markets
are seen as assemblages of economic agents and as platforms for the emergence of
further sub-assemblages and local social networks. In economic sociology, markets
and strategic interactions in networks can be explored by combining game theory,
which focuses on interactions among independent agents, and graph theory, which
focuses on their social relations (Easley and Kleinberg, 2010).

Another important assumption of "mainstream" economic theories is the ratio-
nality of market actors, including the completeness and transitivity of their prefer-
ences. In simple terms, completeness means that market actors always have clear
preferences with respect to the choices that they are faced with. Transitivity then
basically enables all preferences to be ordered with respect to each other. Despite
plenty of evidence against the theory of rational choice, assumptions of rationality
seem to be holding their ground (Mandler, 2005) at least in part because it is difficult
to build a clearly interpretable model of economy and society without them.

Practically, however, people often do not know their preferences a priori, and
these preferences are not comparable to each other or variate over time and depend-
ing on the context. Consider, for example, a flea market where sellers offer unique
items that can have aesthetic, emotional and practical value. More often than not,
buyers come to the market with only a vague, if any, idea of an item they are inter-
ested in. They mostly make a decision only after seeing a number of items, interact-
ing and negotiating with sellers. Such negotiations are not only technical exercises of
matching supply and demand in order to come up with the fair price (as in perfectly
competitive marketplaces), but also a social interaction during which preferences
themselves individuate. The agreed price of an item may even not be the main aspect
of a transaction, and surely may be different depending on individual preferences
of buyer, seller or simply a circumstantial result of their interaction. Such dynamics
cannot be captured by traditional models of faceless buyers and sellers asking and
bidding on quantities and prices of standardized goods. Summarizing, the value of
an item of exchange is at least in part subjective, unique and dependent on singular
expressions of immediate social interaction, not fully reflected in its monetary value.
The idea of offer networks is to reclaim the subjective value of economic exchange,
neglected by utilitarian efficiency-directed theories and standardised markets. In the
context of large-scale digitalized markets, where the face-to-face conversations of the
flea market are no longer an option, there is a need for a computational solution.

In a nutshell, the concrete computational problem addressed by experiments de-
scribed here is search and matching. It is a well established and researched problem in
labour economics (Dao, 2011), an aspect of which is matching unemployed persons’

6.2. Software architecture 147

skills with free jobs in economy. The problem of matching job openings with poten-
tial employees obviously involves more variables than the salary level. Likewise,
offer networks is a call to conceive a market where exchanges are driven by match-
ing the subjective, diverse and multidimensional values of each participant engaged
in an exchange rather than reducing them to one all-permeating dimension medi-
ated via single currency (Goertzel, 2015a). Open-ended decentralized computing
allows the practical implementation of search and matching in the light of a radi-
cal decentralization perspective as a process of bottom-up local self-organization, not
unlike how real world markets operate. Furthermore, it exposes numerous aspects
of fundamental distinction between centralized and decentralized approaches to the
governance of complex, fluid and self-organizing systems – including economics,
society, IT systems and artificial intelligence.

With the help of OfferNets we continue to weave the thread which intertwines
the computational, conceptual and philosophical aspects of this work. The offer net-
works model provides a concrete case for a computer simulation based on the com-
putational model that represents a much broader class of complex self-organizing
cognitive systems. Note that conceptual, computational and software models of of-
fer networks are strongly intertwined and the boundary between them is fuzzy. For
the sake of the discussion’s clarity we will refer to the conceptual aspect as offer
networks and computational / software architecture aspect as OfferNets, while in-
terchangeably using both.

6.2 Software architecture

OfferNets is a simulation modelling framework of radically decentralized economic
interaction, powered by a diverse network of independently operating and inter-
acting agents. It combines two research and development paths which are tightly
related, yet embrace different levels of abstraction:

• Decentralized computing: a scalable computing model and a software frame-
work supporting asynchronous execution of heterogeneous processes. These
processes concurrently use a shared distributed data structure that allows any
mixture of emergent and controlled coordination to be modelled (see Chapter
4).

• Offer networks economy: a decentralized economy providing an alternative to
purely currency-based exchanges. This economy features a complex network
of interactions and optimizes reciprocal exchanges of goods and services by
finding agents with compatible or complementary preferences and coordinat-
ing their interactions. However, we do not attempt, conceptually or computa-
tionally, to model the whole economy here, but restrict ourselves to the demon-
stration of a specific search and matching problem, as introduced earlier.

Recall that, architecturally, software framework is composed of two subsystems:
simulation engine and analysis engine. The concrete implementation of both is ex-
plained below. See Figure 5.12 for an explanation of interaction between these sub-
systems.

148 Chapter 6. Offer networks: a model of decentralized exchange

6.2.1 Simulation engine

OfferNets simulation engine architecture, software framework and relations to the
implementation of the offer networks domain model are illustrated by Figure 6.1:

FIGURE 6.1: Relation between architecture, software and the offer net-
work domain model implementation of the simulation engine.

The four layers of architecture are implemented as follows:

i. Heterogeneous agents’ logic is written in custom code using Groovy1, Java2 and
Gremlin3 programming languages. The choice of languages is mostly con-
strained by the choice of actor framework and graph computing framework
which are both JVM based;

ii. The chosen actor framework is Akka4, which is an implementation of the actor
model on Java Virtual Machine and is a toolkit for building highly concurrent,
distributed and resilient message-driven applications on Java and Scala5. De-
pending on the complexity of actor code, it may support up to 50 million mes-
sages per second on a single machine, 2.5 million actors per 1 GB of memory,
actor systems spanning multiple machines and a persistence layer.

iii. Graph computing framework is the Apache TinkerPop6, which is also the home
for Gremlin graph traversal language. The framework is open source and
vendor-agnostic, meaning that it can be integrated with many data sources,
database systems and programming languages of the open source and com-
mercial world, including massively scalable cloud-based technologies7. Apache
TinkerPop is a matured, but actively developed, de-facto graph computing
standard with the third major stable version at the time of writing.

iv. Persistent network topology (equivalent to the "data source" in TinkerPop’s vo-
cabulary) is implemented using DataStax Enterprise (DSE) Graph8, which is a
distributed and scalable across multiple machines graph database. While the
DSE Graph is built with and natively supports TinkerPop technology, it is the

1https://en.wikipedia.org/wiki/Apache_Groovy
2https://en.wikipedia.org/wiki/Java_(programming_language)
3https://en.wikipedia.org/wiki/Gremlin_(programming_language)
4https://akka.io/
5https://www.scala-lang.org/
6http://tinkerpop.apache.org/
7For the current list of TinkerPop-enabled providers and integration introduction, see

http://tinkerpop.apache.org/providers.html
8https://www.datastax.com/products/datastax-enterprise-graph

https://en.wikipedia.org/wiki/Apache_Groovy
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Gremlin_(programming_language)
https://akka.io/
https://www.scala-lang.org/
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/providers.html
https://www.datastax.com/products/datastax-enterprise-graph

6.2. Software architecture 149

most easily replaceable layer of the stack. Furthermore, from the perspective of
the computational model, a graph database is not a necessity, since graph com-
puting can in principle be implemented in a completely decentralized manner
without a central database (see Figure 5.11) by using other means for ensuring
persistence (e.g. Akka persistence layer). The usage of DSE Graph in the cur-
rent version of OfferNets is a matter of convenience, since no graph computing
engines decoupled from graph databases currently exist.

As illustrated in Figure 6.1, the actor model (via Akka) and agents’ logic sup-
ports the implementation of OfferNets decentralized search and matching, as well
as any offer networks related algorithms which can be implemented independently
on each agent. The graph computing engine (via Tinkerpop) enables agents to define
a domain model and interact with the network structure, the persistence of which
is supported by the DSE Graph. Note that the computational model and software
architecture, described in Chapter 4 and Chapter 5, does not constrain the choice of
actual software for any layer of the stack, given they support the actor model and
graph computing.

Further, the OfferNets domain model is specified as a property graph schema in
terms of types of node, their properties, types of edge, their properties and processes
defining graph traversal and mutation constraints. Beyond that, every agent oper-
ating in the network is allowed to implement any process. Processes which require
interaction with the OfferNets graph are implemented as graph traversals; other
processes – as regular algorithms using general purpose programming languages.

This decentralized computing model and architecture allows us to implement,
test, deploy and observe the evolution of a very large number9 of computational
processes interacting and coordinating directly or indirectly within the same ecosys-
tem. The challenge is then to define concrete processes, design their interaction and
fine-tune the system to the preferred dynamics of the offer networks economy.

6.2.2 Monitoring and analysis engine

Simulation modelling requires the collection and analysis of information about events
happening in the system during runtime. Since a decentralized computing frame-
work by definition does not contain a single point of access to the system, we have
built a specialized engine for collecting and handling large amounts of streaming
data coming from many sources (i.e. single actors potentially scattered across mul-
tiple machines). The basic principle of the engine is based on issuing monitoring
messages on behalf of each agent and then catching and indexing them into a single
(but possibly distributed) database. The technical basis of the engine is ElasticStack10

– an integrated streaming data management and analysis solution (see Figure 6.2).

The monitoring pipeline is fully distributed, with the possibility to be scaled to
multiple machines and is tolerant to failures and restarts of each component sep-
arately. Likewise, the simulation engine is readily scalable to multiple machines
depending on the required load for simulation or production environments. Both
provide real time monitoring capabilities across all machines via web front-ends.
Additionally, real time network, agent activity monitoring and event capturing is

9The scalability of the framework is of course dependent on the amount of dedicated hardware
resources.

10https://www.elastic.co/

https://www.elastic.co/

150 Chapter 6. Offer networks: a model of decentralized exchange

FIGURE 6.2: Architecture, software and implementation of monitoring
and analysis engine.

available via custom-based web front-ends accepting data streams from other parts
of the infrastructure.

6.2.3 Simulation modelling

Designing the dynamics of OfferNets is a simulation modelling research programme.
It amounts to conceiving, implementing and running computational experiments
on the simulation engine and then analysing data collected via the monitoring en-
gine. Due to the large parameter space and many simulations needed for exploring
it properly, this is a computationally intensive process. Furthermore, it is an open-
ended process in the sense that every simulation raises questions and informs the
set-up of the next one, thus iteratively perfecting both computational infrastructure
and the domain model.

In the following sections we provide details about simulations aimed at compar-
ing centralized and decentralized search algorithms on the same graph structures.
Analysis, interpretation, and design for new experiments are compiled into the elec-
tronic laboratory notebook11 using R markdown12 living documents. The raw data is
publicly available at the project’s GitHub repository13.

6.3 OfferNets: informal specification

Our goal is to design a software framework for the system pictured in Figure 6.3
and explore stigmergic cooperation between agents by running computational ex-
periments. The system should allow matches of offers and demands (i.e. data items)
to be found in an economic exchange network of agents in a way that enables each
agent to extract maximum value from its exchanges – with respect to an individual
measure of value – and by that contribute to the total increase of value created in
the system. Already here we can start to appreciate the distinction between the de-
centralized aspect – the measure of value defined individually for each participant –
and the centralized one – some sort of measure of "universal" value in the system14.

11 Electronic laboratory notebook is accessible at
https://singnet.github.io/offernet/public/elabnotebook/

12https://rmarkdown.rstudio.com/
13 Project’s GitHub repository is accessable at https://github.com/singnet/offernet
14This distinction also presents a methodological difficulty: if every agent in the system has a dif-

ferent notion of "value", which, moreover, may change in time, then the notion of "universal value" is
difficult to define. This means that it is not trivial to measure the overall "progress" of a decentralized
system. These are open issues in relation to the theory of value, further discussion and development of
which is outside the scope of this work.

https://singnet.github.io/offernet/public/elabnotebook/
https://rmarkdown.rstudio.com/
https://github.com/singnet/offernet

6.3. OfferNets: informal specification 151

Figuring out how these aspects relate and influence each other is the holy grail of re-
search in the domain of collective intelligence and distributed cognition (Heylighen,
2011, 2013).

FIGURE 6.3: Conceptual architecture of OfferNets.

In OfferNets, humans can be represented in the network by one or more ON-AI
agent. These computational agents, with more or less complex behaviours, can learn
certain preferences of a represented human. Since there is no central authority in
the network, humans can connect to it only via other humans, i.e. via a recommen-
dation. Every human can create as many ON-AI agents as wished. The sole goal of
an ON-AI agent is to announce preferences for the network and find ways to sat-
isfy them. Preferences are satisfied when an agent finds other agents in the network
(representing other humans) with opposite preferences. In OfferNets, preferences
are expressed in terms of preferred exchanges of items – which in the real world
could be goods, services, data or procedural knowledge. To that end, each ON-AI
agent can own a set of works, which encode preference relations among the set of
items and define items that are demanded and items that are offered (see Figure
6.4). The search and match of an ON-AI agent is successful when, given it offers an
item, a similar enough item demanded by another agent on the network is found (this
of course also works the other way).

ON-AI agents relate to each other via knows links which define the agent knows−−−→
agent social sub-graph of OfferNets. Likewise, items can link to each other via sim-
ilarity relations that define item

similarity←−−−→ item order and a sub-graph. Note that the
whole graph and its sub-graphs are dynamic and change in the course of interaction
that results from collective attempts by agents to find locally and globally beneficial
exchanges (see Figures 6.7 and 6.9). The ability to represent different objects and
types of link is supported by the property graph model.

152 Chapter 6. Offer networks: a model of decentralized exchange

FIGURE 6.4: Graphical representation of preferences in OfferNets in terms of rela-
tions between agents, works and items.

From the mathematical perspective, the described OfferNets structure and dy-
namics can be unambiguously and equally well formalized as an optimization prob-
lem (Goertzel, 2015b), a reaction network in artificial chemistry (Dittrich, Ziegler,
and Banzhaf, 2001; Heylighen, 2017) or a graph match and search problem (Goertzel,
2017b). However, the mathematical perspective is in a sense "logically centralized"
and requires assumptions to be made and global modelling constraints imposed
that detach the resulting model from observable dynamics in real-world decentral-
ized markets (not unlike "mainstream" economic thinking). These constraints are
best formulated in terms of preferences (Hansson and Grüne-Yanoff, 2018):

i. Individual (psychological) preferences are known and complete. This constraint re-
flects the assumption that agents (humans or AIs): (1) can name their prefer-
ences – i.e. make a list – and (2) can unambiguously order this list, at least
potentially. We will leave aside the phenomenological issue of whether any
real world item is in principle describable by a list of properties that can fur-
thermore be ordered by their "essentiality".

ii. Revealed preferences are complete. Revealed preferences are those which an agent
discloses to other agents engaged in interaction or a market place. In a sense,
revealed preferences are more important than individual psychological pref-
erences in the context of search and match – since preferences have to be ex-
ternalized in order to facilitate any interaction in the first place. We assume
that normally not all psychological preferences are revealed. The correspon-
dence between revealed and psychological preferences is a separate, while not
unimportant, question which we again will not ponder here.

iii. Preferences are consistent. In the context of OfferNets, consistency of preferences
means that they are stable in time. This applies both to individual psychologi-
cal and revealed preferences, but the latter are more important.

With these constraints in mind, recall the example of a flea market. Obviously,
none of the constraints hold in this context: buyers do not know exactly what their
preferences are before seeing items, while sellers may change their prices depend-
ing on the interaction with a potential buyer. Preferences of either get individuated
and only then revealed, and revealed preferences are not complete15. Furthermore,
no preferences are stable – one can have a completely different "set" of preferences
after walking 10 minutes or half an hour in the market. Actually, most of these con-
straints do not hold even in regular physical or on-line shopping: it is common to

15There is an inherent asymmetry among revealed preferences of buyers and sellers, where the latter
normally reveal more. This asymmetry has been addressed by web Of Needs project (Kleedorfer and
Busch, 2013).

6.3. OfferNets: informal specification 153

emerge from a shop with completely different purchases in the basket than were
imagined before entering it. On the other hand, there are different markets where
these constraints may hold with different strengths: e.g. standardized commod-
ity, stock or transportation markets, where both supply (offers) and demand can be
specified a priori and interaction kept to a minimum. Yet these can be considered
rather exceptional, where supply and demand prices carry most of the information
needed for decision making. The conceptual question that offer networks poses is
therefore whether and how complex exchanges can be enriched and possibly their
micro-economic dynamics affected by introducing ways for multi-dimensional in-
formation exchange (Goertzel, 2015a). Enabling dynamic interactivity of buyers and
sellers is essential for large scale practical applicability of this idea and this is pre-
cisely why the offer networks model is well suited for implementing open-ended
decentralized computing architecture.

From the computational point of view, OfferNets can be described in terms of a
combination of a data structure and processes. It is customary (and remarkably useful
in the practice of designing computational systems) to think of processes as func-
tions operating on data structures by mutating them. Yet it is entirely reasonable
(but not equally intuitive) to think of processes without reference to a priori data
structures which they change – which relates to progressive determination and stig-
mergic computing (see Section 4.5).

6.3.1 Data structure

OfferNets is defined according to the property graph model which: (1) contains nodes
and relationships; (2) nodes contain properties and can be labelled; (3) relationships
are named, directed, can contain properties and always have start and end nodes
(see page 38). This model is more expressive than a theoretical mathematical graph
and can represent arbitrarily complex real world structures16.

OfferNets property graph schema includes vertices of type [agent, work, item] and
edges of type [knows, owns, demands, offers, similarity]:

Agents represent actual participants of the economic exchange – ON-AI Agents (see
Figure 6.3) – which together form a social network. Every agent in the network is
connected to at least one another agent. This gives rise to an important property
of the graph: it is necessarily connected, i.e. there exists a path via knows relation
between every pair of agents. This property is crucial for decentralized computing,
as will be explained later. Agents also relate to one or more works via owns links
– representing situations in which an agent publishes that it "wishes" to exchange
something in the network.

OfferNets is not only a data structure, but also a computational medium and
as such has to account for computing resources needed to run decentralized pro-
cesses. Agents participating in the network (people or AIs) are those entities which
own computing resources. Note a direct relation of OfferNets to the actor model

16A hyper-graph, which may better correspond to many biological and neural structures found in
nature (Goertzel, 2017a) is a generalization of the property graph in that it allows one edge to connect
more than two vertices. Hypergraph data structures are preferred by some AGI (namely OpenCog)
and reasoning (namely GRAKN.AI) systems. Note, however, that a property graph can be transformed
to a hypergraph without data loss, but not the other way round in a general case (Blockeel, Witsenburg,
and Kok, 2007; Robinson, Weber, and Eifrem, 2015).

https://wiki.opencog.org/w/The_Open_Cognition_Project
https://grakn.ai/

154 Chapter 6. Offer networks: a model of decentralized exchange

FIGURE 6.5: OfferNets graph structure. Note that this is an initial
structure which does not contain similarity links, which appear in the
graph only after running processes, as explained in Section 6.3.2 on

page 156.

of computation (see Section 5.1) where every actor controls its own computing re-
sources. Moreover, note the similarity to the notion of the computation graph as a
self-organizing interaction of elementary processes, which makes OfferNets a spe-
cial case of open-ended decentralized computing (see Figure 5.10). In this sense, work
is a special process (see Section 4.5.1) with demand as an input and offer as an output.
This process is neither immediate nor resource-free: any actual exchange involves
costs (time, transportation or other arrangements) which have to be represented in
any practical application. These, and similar, issues are left out from the current sim-
plified model of OfferNets, but can be readily implemented by including additional
features as defined the by general model of open-ended decentralized computing.

Work therefore represents the "process of exchange" in which an agent is willing
to engage with other agents in OfferNets. By "owning" a work, an agent pledges that
the work will be executed if a match is found17. In the current simplified OfferNets
model work connects only one demand with one offer, yet in principle arbitrary com-
plex works can be represented featuring more than one input (energy, computational
resources or a monetary payment) or output. Moreover, work can represent the ex-
change of data output (e.g. textual description of an image) for data input (e.g. an
image to be described), a monetary payment (in fiat or crypto- currency), compu-
tational resources needed for the task, or location of the process in the network’s
topology. In this case, a work would not be a "process of exchange" but rather a "pro-
cess of text summarization" which nevertheless can be perfectly well represented
within the same framework.

An item is an actual "thing" that is put forward by an agent for a potential ex-
change. In OfferNets this is limited to actual physical or non-physical things, but
in general an item could be a representation of any input or output of a generalized
process (i.e. data, token, energy units, etc.).

In order for the processes operating within OfferNets (Section 6.3.2) to be able

17Any such pledges in a decentralized system have to be supported by the system of "distributed
trust", which is another important and interesting issue which is outside the scope of our present
treatment of offer networks.

6.3. OfferNets: informal specification 155

to find matching offer and demand pairs which could be exchanged, a similarity
relation between any pair of items should be defined. That is, given an arbitrary
pair of items registered in the network, a process or algorithm should be able to
calculate how similar (or dissimilar) they are. If and when the similarity between
two items is calculated, a symmetric similarity relationship between them is created
in the OfferNets graph18.

FIGURE 6.6: OfferNets graph schema.

This means that every item has to contain a description according to which its
similarity with other items in the network can be potentially estimated or calcu-
lated. Here we touch again the issue of properties and preferences (see page 152).
For the purposes of this OfferNets simulation, the description of an item and sim-
ilarity relation are defined as a real number between zero and one. While these
choices of definitions are not arbitrary, they are of minor importance in the context
of experimenting with centralized and decentralized search and match in OfferNets.
It should nevertheless be noted that representation of and similarity measuring be-
tween real-world items is a large and interesting domain of inquiry in itself. Similar-
ity can be an arbitrary complex relationship depending on the practical application
of the framework. A truly decentralized Offer Network type system should be able
to accommodate different and possibly competing variants of measures and algo-
rithms. The architecture of OfferNets allows for plugging in any chosen similarity
representations.

Relations of similarity between items enables chains and cycles of works to be
found. A chain forms itself when there is an item i1 offered by work w1 and item i2
demanded by work w2 and when items i1 and i2 are sufficiently similar (see Figure
6.7a). "Sufficiently similar" in this context means that the calculated similarity mea-
sure between items is greater than or equal to an arbitrary threshold set by an agent
engaging in the exchange of items (different agents may have different thresholds).
If this parameter is equal 1, then the requirement is to exchange only strictly similar
items, which results in a standardized exchange. A cycle is simply a chain forming
a loop (see Figure 6.7b). When a chain or a cycle is found in OfferNets, it indicates
the possibility of an actual exchange between agents.

Apart from the chains and cycles illustrated in Figure 6.7, works can be con-
nected in arbitrary complex workflows in cases where a domain model allows them
to have multiple demands and offers (see Figure 6.8). The problem of search and
matching is precisely a generalized process of finding workflows in such a network
– the complexity of which as well as a comparison of algorithms from the mathe-
matical perspective are investigated by Goertzel (2017b).

18In the OfferNets graph schema, a symmetric similarity relation is represented by two directed edges

a
similarity−−−−−→ b, b

similarity−−−−−→ a, where a, b are items and a 6= b

156 Chapter 6. Offer networks: a model of decentralized exchange

(A) Chain (B) Cycle

FIGURE 6.7: Examples of a chain and a cycle in OfferNets. Red
spheres are items, green – works, blue – agents. Figures are visual-

izations of the results of an OfferNets simulation.

FIGURE 6.8: Data centric approach, describing workflow as a sequence of tran-
sitions between data states (inspired by Cushing, 2015; Cushing et al., 2015).
In OfferNets terms, work here is represented as a process Pi, items as data states

Si and agents as blue rectangles Ai.

6.3.2 Processes

Following the basic principles of open-ended decentralized computing, OfferNets is
implemented as an ecosystem of decentralized processes interacting via a stigmergic
medium. The list of decentralized processes is open-ended in the sense that any pro-
cess can be executed by an agent participating in the network. Processes needed for
basic functionality of OfferNets are: (1) similarity search, (2) find cycles of change-
able items, (3) execute exchange cycles and (4) find and connect items of exchange
via similarity links. These processes are described in detail below.

Process #1: Similarity search

This process searches similar items in the network according to given criteria and
connects them with explicit similarity links. The ability to measure similarity of items

6.3. OfferNets: informal specification 157

is based on an agreed representation and description of each item. Similarity mea-
sures can also take different forms depending on item representation. If the rep-
resentation is the real number, then the similarity measure could be a difference. If
items are described by vectors, similarity can be measured by a Hamming distance19

or as cosine similarity20. In the case of natural language descriptions or images,
NLP techniques or image summarization could be used. Note that these measures
are global parameters of simulation framework and different forms of them can be
"plugged" and "unplugged" dynamically. Furthermore, in a decentralized system,
nothing prevents agents from agreeing themselves on the usage of different simi-
larity measures within the same framework. In terms of the overall dynamics of
OfferNets, the goal of the similarity search process is to change the topology of the
graph so that similar items become topologically closer to each other (see Figure 6.9
and Figure 6.10).

(A) Before similarity search processes: 12 nodes (of
type agent, work, item); 12 edges (of type knows,
owns and demands | offers); zero similarity links.

Si
m

ila
ri

ty
se

ar
ch

⇒

(B) After similarity search processes, 4 similarity
links forming a cycle.

FIGURE 6.9: Visualization of graph mutations and topology change
due to similarity search process and similarity links creation on a

small OfferNets sub-graph.

In this example item values are represented as real numbers in the range [0, 1].
Similarity between two items is then calculated using the formula Sim = 1−abs(valuei1−
valuei2) which also results in the real number in the range [0, 1]. The closer this num-
ber to one, the more similar the items are.

Algorithmically, the similarity search process is implemented in two ways – cen-
tralized and decentralized. The comparison of their performance forms the basis of
the experiment discussed in Section 6.4.

Centralized similarity search

A centralized similarity search simply fetches all items in the network, compares each
of them to every other and creates a similarity link among those that have a similarity
value exceeding a parameter of similarityConnectThreshold. This parameter regulates
the density of connectivity between items on the one hand and the ability for agents
to exchange "fuzzy" similar items on the other.

19https://en.wikipedia.org/wiki/Hamming_distance
20https://en.wikipedia.org/wiki/Cosine_similarity

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Cosine_similarity

158 Chapter 6. Offer networks: a model of decentralized exchange

(A) Before similarity search processes: 534 nodes
(of type agent, work, item); 534 edges (of type knows,

owns and demands | offers); zero similarity links.

Si
m

ila
ri

ty
se

ar
ch

⇒

(B) After similarity search processes, 46.574
similarity links

Nodes Links
Agent 75 ’knows’ 74
Work 153 ’owns’ 153
Item 306 ’demands’ / ’offers’ 306

FIGURE 6.10: Visualization of graph mutations and topology change – same as Figure
6.9 but on a larger graph.

A centralized similarity search requires a full scan of the graph in order to collect
data on all items demanded or offered by agents at a certain moment in time, com-
bining this data into a single data structure and then processing it in a centralized
(but possibly distributed) manner.

Decentralized similarity search

A decentralized similarity search, unlike the centralized one, works only on behalf of
an agent that initiates the search and does not require the fetching of all item values
from the network. On the other hand, a decentralized process requires concurrent
and asynchronous execution on behalf of each agent. It operates as a spreading ac-
tivation which starts with the initiating agent’s items and checks their similarity to
those of the agent’s neighbours. A decentralized similarity search takes similarity-
ConnectThreshold and maxDistance parameters. The former serves in the same way
as in a centralized search, while the latter determines how far into an agent’s neigh-
bourhood the spreading activation process traverses.

The process follows this logic (see also Listing 6.1 for the pseudo-code):

i. traverse knows relations in a agent knows−−−→ agent sub-graph starting with agent a1
and reach all connected items ii of a "friend of friend" within distance maxDistance
from a1;

ii. calculate a similarity measure s = similarity(i1, ii) for all found items and cre-
ate a similarity relation between i1 and ii if and only if the global parameter
similarityConnectThreshold is larger or equal to s.

6.3. OfferNets: informal specification 159

LISTING 6.1: Pseudo-code of similarity search process via
agent

knows−−−→ agent sub-graph.
1 # parameters:
2 # -- me: the agent that initiates traversal
3 # -- maxDistance: number of hops in traversal;
4 # -- similarityConnectThreshold: only items with this and higher similarity

are connected;
5

6 myItems <- me.getAllDemands() + me.getAllOffers();
7 discoveredItems <- emptyList();
8 distance = 0;
9

10 function getItemsOfNeighbours(agents):
11 for each agent in agents do:
12 discoveredItems <- discoveredItems + agent.getAllDemands() +

agent.getAllOffers();
13 neighbours <- agent.knowsAgents();
14 getItemsOfNeighbours(neighbours);
15 distance = distance +1;
16 if distance = maxDistance do:
17 break from cycle;
18

19 getItemsOfNeighbours(me)
20

21 for each discoveredItem in discoveredItems do:
22 for each myItem in myItems do:
23 similarityValue = calculateSimilarity(discoveredItem, myItem)
24 if similarityValue >= similarityConnectThershold do:
25 createLink(from: myItem, to: disoveredItem, type:

similarity, value: similarityValue)

Running this process a sufficient number of times results in items with similar
values forming densely connected clusters in the graph – i.e. it alters network topol-
ogy as illustrated in Figure 6.10 in a way that enables decentralized search of paths
and cycles as well as making further similarity searches more efficient.

Process #2: Find cycles of changeable items

In graph theory, a cycle is a collection of vertices and edges between them where
each vertex is reachable from itself via edges present in the collection (see Figure
6.7b). Cycle search is the process that finds such data structures in a messy and
unstructured initial graph. Concretely, in OfferNets, a decentralized cycle search
process is a vertex centric graph traversal which, for a chosen work w1 owned by an
agent a1, and given similaritySearchThreshold and maxDistance parameters, initiates
the following process:

i. traverse offers and demands relations starting with workw1 and find sub-graphs

of the pattern work1
demands|offers−−−−−−−−→ item1 → similarity12 → item2 → work2 (see

Figure 6.7a), where similarity12 >= similaritySearchThreshold; repeat the same
traversal until encountering the start of the traversal work1, but not more than
maxDistance times;

ii. return information on paths and cycles found to agent1, which initiated the
traversal.

A discovered cycle (see Figure 6.11 below) represents a match of demands and
offers of at least two agents participating in the marketplace and the possibility of
actual exchange between them. More formally, it is a sub-graph of the OfferNets,
where agents "know" other agents’ preferences with respect to the discovered match

160 Chapter 6. Offer networks: a model of decentralized exchange

and can agree to execute the exchange cycle (see process #3). Importantly, the cycle
in this case is discovered solely via the decentralized vertex-centric graph traversal
without any central processing or data storage – as required by the model of open-
ended decentralized computing.

(A) Small cycle
Agents 3
Works 3
Items 6

(B) Larger cycle
Agents 10
Works 10
Items 20

FIGURE 6.11: Cycles discovered in the OfferNets graph by cycle
search processes; note how it relates to the conceptual architecture of

offer networks (Figure 6.3 on page 151).

Cycles are temporary structures – they get dissolved when executed. Actually,
the OfferNets system can be considered more successful and beneficial when more
cycles are discovered, executed and dissolved per unit of time, which is a measure
of fluidity of the network. Another important aspect, emphasized in the figure, is
that while cycles are of dynamic nature – emerging and dissolving during operation
of the OfferNets graph – they are basic elements of the conceptual architecture of the
self-organizing network of interacting agents (see Figure 6.3).

Process #3: Execute exchange cycles

Finding cycles only increases the probability that certain items will be exchanged,
but is far from guaranteeing it. While in a centralized system an execution of the
discovered cycle is straightforward, it is not so in the decentralized case. First, since
many search and match processes are executed asynchronously, more than one cycle
can emerge involving overlaps of agents and items. In this case, a consensus has to
be reached, via negotiations, on which cycle will be executed and which will be
neglected. This already involves a game-theoretic aspect. Second, when a cycle
involves fuzzy matches, the willingness of agents to exchange items that are not
strictly similar has to be confirmed. Third, the presence of insufficient information
in the network due to incomplete preferences (Mandler, 2005) should be considered
– implying the necessity of a round of negotiations between agents involved in the
cycle before its execution. Finally, exchanges in distributed systems cannot rely on
a single provider of trust and therefore must use a distributed trust model (Abdul-
Rahman and Hailes, 1997) including, but not necessarily limited to, the blockchain
technology (Swan, 2015) and a reputation system or systems (Kolonin et al., 2018).
When an agent receives a list of paths and cycles from the cycle search process, it

6.3. OfferNets: informal specification 161

decides, according to an built-in logic (which may be different for heterogeneous
agents), whether to initiate a transaction in case a valid cycle is found. The resulting
dynamics of an OfferNets depends on competition and collaboration between agents
with different logic and goals.

Process #4: Search and connect similar items of exchange via similarity links

Computational complexity and success in finding matches in the graph are mostly
due to the similarity search process rather than the cycle search. Likewise, search via
the agent knows−−−→ agent sub-graph is relatively costly because it requires many agents in
the neighbourhood graph to be checked in order to find a similar item. Furthermore,
in a decentralized scenario and depending on the topology of the graph, the search
may not succeed even in cases where a cycle exists. Therefore, it may be much more
efficient to traverse the item

similarity←−−−→ item sub-graph directly where similar items are
clustered together due to traces of process #1. This type of search would utilize graph
topologies on the right rather than left of Figures 6.9b and 6.10b – where similar
items are topologically closer, which implies shorter average traversal paths. Listing
6.2 provides a pseudo-code of the logic of this process.

LISTING 6.2: Pseudo-code of similarity search process via

item
similarity←−−−→ item sub-graph.

1 # parameters:
2 # -- me: the agent that initiates traversal
3 # -- maxDistance: number of hops in traversal;
4 # -- similarityConnectThreshold: only items with this and higher similarity

are connected;
5 # function getItemsOfNeighbours(agent) is defined in pseudocode for Process

#1;
6

7 myItems <- me.getAllDemands() + me.getAllOffers();
8 distance = 0;
9

10 function searchAndConnectViaSimilarityLinks(myItem, otherItem):
11 similarityValue <- calculateSimilarity(item, otherItem)
12 if similarityValue >= similarityConnectThreshold do:
13 createLink(from: myItem, to: iterItem, type: similarity, value:

similarityValue)
14 if distance > maxDistance do:
15 break from the loop;
16 else:
17 nextMostSimilarItem <- item.getSimilarItems(max(similarityValue))
18 searchAndConnectViaSimilarityLinks(myItem, nextMostSimilarItem)
19

20

21 for each myItem in myItems do:
22 distance = distance + 1;
23 if distance = maxDistance do:
24 break from cycle;
25 if item.hasSimilarityLinks() do:
26 mostSimilarItem <- item.getSimilarItems(max(similarityValue))
27 searchAndConnectViaSimilarityLinks(myItem, mostSimilarItem)
28 else:
29 itemsOfNeighbours <- getItemsOfNeighbours(me)
30 for each discoveredItem in itemsOfNeighbours do:
31 searchAndConnectViaSimilarityLinks(myItem, discoveredItem)

As specified, the above process traverses item
similarity←−−−→ item sub-graph directly if it

exists; otherwise, it reverts to traversing the agent knows−−−→ agent sub-graph as defined
by process #1. When many such processes operate concurrently, initiated and sus-
tained by different agents, each process changes the local graph structure around

162 Chapter 6. Offer networks: a model of decentralized exchange

itself, which is then traversed by many "neighbouring" and possibly some "distant"
processes. Together, the combination of asynchronous processes and the graph as
a stigmergic medium leads to the fluid dynamics of progressive determination (see
Section 3.2.4) and open-ended decentralized computing (see Section 4.4.1).

6.3.3 Research questions

The ambition of the OfferNets simulation modelling project is to conceive, implement
and test mechanisms of search, matching and execution of exchange of goods and services
in a radically decentralized system. This ambition is pursued by asking (and answer-
ing) concrete research questions which allow the clear formulation and testing of
scientific hypotheses – a process leading to incremental building of the system. The
current research horizon encompasses the following research questions:

i. What are the parameters that determine the advantages and disadvantages of decen-
tralized and centralized search algorithms in different contexts? In principle, Offer-
Nets logic and goals can be achieved by either centralized (global) or decen-
tralized (local) processes running on the same data structure as defined earlier.
In practice, however, the feasibility of any of the approaches is largely deter-
mined by concrete circumstances and context-specific aspects. For example,
centralized algorithms can optimize results at the cost of larger computational
complexity needed to carry them, together with the need for central storage
of data structure and privileged access to it (see the fundamental trade-off of
decentralized computing on page 27). Decentralized algorithms on the other
hand may achieve sub-optimal, but still "good enough" results faster at the cost
of giving up control of the whole data structure. Note that the very term "good
enough" implies context dependency. In order to provide at least some insights
to this question we set up centralized and decentralized search processes in Of-
ferNets and tested them with different parameters (see Section 6.4 for design
and results of a computational experiment on comparing decentralized versus
centralized search).

ii. Can we conceive processes which make themselves more efficient by utilizing results of
"traces" left by preceding processes? Such processes, interacting with each other
in a progressively determining way, would implement the learning ability of
the network. Similar to the first research question, this can be implemented in
a centralized or decentralized manner.

6.4 Centralized versus decentralized processes of OfferNets

This section presents and discusses results of the computational experiment de-
signed to answer the research question concerning the advantages and disadvan-
tages of decentralized versus centralized similarity search process in OfferNets. It
demonstrates how principles, including, but not limited to stigmergic cooperation
between software agents, can be utilized in a software architecture based on the
open-ended decentralized computing principles.

6.4. Centralized versus decentralized processes of OfferNets 163

6.4.1 Setup

In order to compare process #1 and process #2 in their both centralized and decen-
tralized implementations we follow these steps:

1. first, we create an OfferNets graph of predefined size. We experiment with the
random graph (where agents are randomly connected with knows links) and a
small-world graph, where we know the diameter of the network in advance;

2. then we artificially create a list of items which, if correctly searched and con-
nected in the OfferNets graph, will form a chain (see Figure 6.7a). The length
of the predefined chain is set by the simulation parameter chainLength;

3. items from the list are assigned to random agents in the network;

4. then, we create a special taskAgent owning a work which, when correctly con-
nected to the potential chain inserted into the network by step 2, closes it into
a loop forming a cycle (see Figure 6.11);

5. finally, we run the decentralized and centralized processes on the same graph
and record the running times of each method.

• The similarity search process connects all similar items with similarity
links, as explained in Section 6.3.2;
• The cycle search process is run on behalf of taskAgent and discovers the

cycle inserted by step 2 only if the similarity search process connects a
large enough number of items – as explained in Section 6.3.2.

What is hereinafter called an "experiment run" is a series of simulations, each of
which takes a different combination of the following parameters for the purpose of
exploring the parameter space (see Figure 6.12):

• agentNumber: the number of agents in the network;

• similarityConnectThreshold: the minimum similarity value between items con-
nected with explicit link by similarity search process;

• chainLength: the length of an artificially created chain inserted into the network
by step 2;

• similaritySearchThreshold: minimal similarity of items to be considered as eligi-
ble for exchange;

• maxDistance: radius of agent’s neighbour network when searching for similar
items;

• randomWorksNumberMultiplier: the number of random works and items which
are assigned to the agents in the network to make cycle search more realistic;

6.4.2 Observed dynamics

Here we present the observed dynamics of simulations, mostly in terms of the re-
lation of time to the topology and size of the OfferNets graph. We briefly describe
the technical aspects behind these observations. Interpretation of and conceptual
insights from the observations are discussed further in Section 6.5.

164 Chapter 6. Offer networks: a model of decentralized exchange

FIGURE 6.12: Distribution of simulation parameters of all analysed experi-
ments (total number of simulations: 1,554; aggregate simulation time (user):

757 hours, events cached: about 1 billion).

Sensitivity to graph topology

First of all, data collected from simulations supports the intuition that decentral-
ized and centralized searches have very different sensibility to the underlying graph
topology. That is, the centralized search algorithm is more sensitive to how many
agent nodes are in the graph rather than on how well they are connected. The decen-
tralized search, on the other hand, is sensitive to the topology of the agent knows−−−→ agent
sub-graph. In part this is because decentralized graph traversals continue only as
deeply as constrained by maxDistance parameters, which define the radius of explo-
ration (see Section 6.4.1). Due to this, where the diameter of the graph is larger than
maxDistance, the cycle may not be found, even though it exists in the network. It is of
course possible to increase the maxDistance parameter to the arbitrarily large num-
ber, but this also may increase the time (see Figure 6.13). Another aspect is that the
computational complexity of deep graph traversals depends on how many outgoing
links every traversed node has (i.e. the branching factor of the tree constructed by
a traversal) – which is a parameter of network topology. Obviously, the larger the
branching factor the more computationally complex it is to traverse it.

For confirming the sensitivity of the decentralized search to graph topology we
also ran simulations with the same parameters on two different graph topologies
– (1) randomly connected (Erdös and Rényi, 1959) and (2) small world (Watts and
Strogatz, 1998), with a diameter of less than 10. As shown in Figure 6.14, the success
rate of finding a cycle in a random graph is often lower than 100%, except when
the traversal depth is made very large – which takes more time, as shown in Figure
6.13. On the other hand, a small world graph structure with a known diameter and
corresponding maxDistance parameter guarantees that the cycle will be found if it
exists in the graph, even in a decentralized scenario.

6.4. Centralized versus decentralized processes of OfferNets 165

FIGURE 6.13: Dependence of decen-
tralized search time on maxDistance
parameter. Traversals with higher
maxDistance have a higher probabil-
ity of running longer. Runtimes are
not deterministic because they de-
pend to some extent on fine graph
topology (i.e. agent knows−−−→ agent
sub-graph which is generated ran-

domly).

FIGURE 6.14: Success rate of finding a cycle in random and small
world graphs with decentralized traversals with different maxDis-
tance parameter. Small world graphs have a known diameter of 10.
Note that with random graphs, maxDistance of 5 and 10 is not enough
to traverse the whole graph, while 30 often provides (but does not
guarantee!) full coverage. Likewise, a decentralized search with
maxDistance = 5 does not always find a cycle in the graph with di-

ameter 10.

Decentralized search time is sensitive to the number of edges

Figure 6.15 shows the dependency of simulation time on the number of similarity
edges in OfferNet graphs with a different number of agents. The decentralized
search seems to be marginally faster when there is relatively small number of links
in the graph, yet its time complexity quickly exceeds the centralized search when
the number of similarity edges increases.

This data show that the centralized search is almost always faster than the de-
centralized. Note also that the decentralized search may find the same cycle several
times during the same simulation, which is not possible in the centralized case. This
is because similarity search and cycle search processes run asynchronously and in-
dependently of each other. Therefore there is no easy way to stop all processes when
one of them finds the cycle.

Centralized search time increases with the number of vertices

The dependency of time of simulation on the number of total vertices in the graph
(i.e. of type agent, work and item) is visualized in Figure 6.16.

166 Chapter 6. Offer networks: a model of decentralized exchange

FIGURE 6.15: Dependence of simulation time on the number of simi-
larity edges in the graph.

Not unexpectedly, the time needed for the search increases with the number of
vertices in the graph, which follows common sense intuition. This is correct for both
centralized and decentralized versions. Note, however, that in decentralized traver-
sals it is difficult to separate the role of number of vertices from the role of number
of links, since they are highly correlated variables. Nevertheless, we can at least
approximately estimate the effect of the number of links in OfferNets simulations
with the help of the similarityConnectThreshold parameter. Recall that this parameter
sets the minimum value for items’ similarity in the network for them to be connected
with a similarity link. Figure 6.17 shows how it modulates the topology of the graph,
since when the parameter is lower, the probability of two items getting connected is
higher, and therefore total number of edges in the graph is higher given the same
number of vertices.

As can be seen from Figure 6.16, simulation times in the centralized search are al-
most non-dependent on the magnitude of the similarityConnectThreshold parameter.
The opposite is true for the decentralized search, where the spread between lines
representing different similarityConnectThreshold is obvious. Therefore, the central-
ized search is more sensitive to the number of vertices, and the decentralized to both
number of edges and vertices.

6.5. Summary and discussion 167

FIGURE 6.16: Time needed for centralized search roughly increases
depending on number of vertices in the graph.

FIGURE 6.17: Graph
topology as modulated
by similarityConnect-
Threshold parameter.
The lower value of this
parameter on average
means that more items get
connected with similarity
links, and therefore the
total number of links in

the graph increases.

6.5 Summary and discussion

This chapter presents and discusses the implementation of selected aspects of a de-
centralized exchange using the software architecture of open-ended decentralized
computing. Concretely, we have implemented the logic of the offer networks do-
main model on the simulation engine, run a number of simulations with different
parameters and presented their results with the help of analysis and the monitoring
engine designed in Chapter 5. Within the scope of this work, the goal of OfferNets
simulation modelling experiments was, first of all, to gain insights from actual im-
plementation and operation of the architecture in the running computer code. Recall
that the design-based research methodology of this work is motivated by the desire
to connect ultimately abstract with the most specific. This connection is not to be
understood as a "research funnel"21, which describes stages of research in terms of
how close they are to the problem that is being addressed by a research project,
where the sole purpose of the funnel is to direct and restrict all stages of research
towards the a priori formulated problem. In our case, philosophical, computational,
software design and practical implementation are all aspects that inform each other
and the whole research programme. The implementation and application of the
framework to practical problems in a well defined domain adds a pragmatic layer

21Boulton, E. (2014, July 22). The Research Funnel [Blog]. Retrieved January 17, 2019.

http://www.collectivelyemmaboulton.com/journal/2014/7/22/the-research-funnel

168 Chapter 6. Offer networks: a model of decentralized exchange

to approaching the problematic of open-ended computing and dealing with decen-
tralized complex systems as well as the centralization – decentralization dilemma in
general.

Open-ended decentralized computing deals with uncertainty, rather than effi-
ciency, which is a primary concern of closed computing (see Section 4.3). Simu-
lation modelling experiments with OfferNets clearly expose this distinction. Ob-
serve, from the comparison of centralized and decentralized search results in Sec-
tion 6.4.2, that the centralized search is more efficient in almost all cases. Leaving
aside (without neglecting) the specifics of technical implementation of both types of
algorithm, observe that the design of research questions for the computational ex-
periments follows the hypothetico-deductive method of science22. In our case this
method implies formulating a goal and then comparing how well centralized and
decentralized algorithms fare in reaching it. This approach is perfectly legitimate in
pragmatic terms, yet also misses the point – because the very existence of a common
goal is set to measure efficiency, yet decentralized computing and algorithms deal
with uncertainty instead. Therefore, the two are not easily comparable. Obviously,
a computing model that deals with efficiency (i.e. centralized) will fare better when
presented with a task requiring efficiency. However, this does not say that there is no
point in comparing the two approaches – but that a just comparison has to involve
both efficiency tasks and uncertainty tasks and the latter are more difficult to design,
if at all possible within the framework of the hypotetico-deductive method.

Furthermore, observe that setting a goal for an algorithm in computational terms
means setting a halting criterion for a computational process in the Turing (1937)
sense. However, open-ended computing is conceived specifically for being able to
define computation which is not dependent on explicit halting criteria. In OfferNets
experiments it is revealed by the following: while a centralized search can be per-
formed and then checked for correctness once, after the algorithm has been halted,
a decentralized search has to check the cycle and path found by every asynchronous
process internally and then halt when one is found – which clearly is more compu-
tationally costly in a goal-directed setting. Conceptually, this insight points to the
observation that self-organization, open-endedness and open computation are more
costly computationally and in terms of resources than goal-directed processes and
closed computation when approached from the perspective of their final product.
Consider, for example, biological evolution. The absolute majority of species that
ever lived on Earth are extinct. Moreover, most of the evolutionary variations (a sort
of decentralized exploration) are unsuccessful. If looking from the perspective of "fi-
nal products" – i.e. currently living species – evolution is a huge waste of resources.
Yet, if looking from the starting point, where nothing is determined, the explorations
that supposedly lead nowhere are necessary for "organizing the unknown". This
metaphor applies also to AI research perspectives (see Section 2.1) and above all to
the distinction between AI and AGI. In the same manner, if the goal of an AI engine,
machine learning implementation or a robot is known in advance, it will be always
more computationally efficient to design a concrete algorithm which reaches that
goal. Yet if one is concerned about intelligence expansion, radical novelty and the
diversity of its forms, one is necessarily faced with the issue of dealing with uncer-
tainty, which no combination of goal-directed AI engines or processes can account
for. For one, this allows us to appreciate the power of the computational metaphor.

22See Section 1.3 for discussion of the hypothetico-deductive method of science.

6.5. Summary and discussion 169

Moreover, depending on the level of self-organization, surprise, generality and abil-
ity to deal with uncertainty that is desired from our systems – computational, social,
economic or socio-technical– we need to balance efficiency criteria with the addi-
tional resources necessary for self-organization. The conclusion that determinism is
a special case of non-determinism (see Section 4.2.3) is equivalent to the statement
that goal-directed intelligence and behaviour is a special case of open-ended intel-
ligence (see Section 2.2.3). In summary, self-organization itself is computationally
costly and may be not the most efficient way of achieving results, when the goal
of computation is known. On the other hand, computational self-organization is
necessary when the problem domain is not clear.

The overall role of this chapter in terms of implementation of the offer networks
domain model on the basis of open-ended decentralized computing architecture is
to demonstrate the importance of connecting the deep philosophical and conceptual
framework to concrete software development decisions. We believe that such con-
nections play a crucial role in complex software development programmes, having
long term and broad implications, certainly related to the artificial intelligence re-
search programme, but also to complex engineering undertakings in general. We
may call this approach philosophical engineering – not in the sense of engineering
philosophy, but in the sense of emphasizing the role of philosophy for engineering
complex systems. The next chapter presents and discusses how the open-ended de-
centralized computing model, and the conceptual paradigmatic shift that it carries,
offers pragmatic perspectives to some of the most complex challenges of developing
and governing contemporary socio-technological systems.

171

Chapter 7

Future avenues of application

Parts of the chapter are based on the following working papers and technical reports:

Veitas, V., Heylighen, F., Hodne, T.-E., Lenartowicz, M., Weinbaum, D. R., and Beigi, S.
(2015). Governing the Future’s Power System: toward a method of guided self-organisation
for the Smart Grid. Working Paper. Brussels: Global Brain Institute, CLEA-VUB.

Veitas, V. K., & Delaere, S. (2018). Policy Scan and Technology Strategy Design methodology
(Technical report) (p. 20). Brussels: imec-SMIT-VUB.

Veitas, V. K., & Delaere, S. (2018). In-vehicle data recording, storage and access management
in autonomous vehicles (Technical report) (p. 21). Brussels: imec-SMIT-VUB.

7.1 Open machines

At the beginning of this thesis we provided a broad introduction to the modern
quest for designing synthetic intelligence. Over the history of the last seventy years
of this quest, many paradigms, branches and roots of conceptual, fundamental and
applied thinking have been merged and also divided. Some of the branches of this
quest have explicitly accounted for the desire to understand intelligence at large,
others have contributed to it implicitly, while others have championed a clear-cut
"no-nonsense" technical solution building. Yet some other branches I have left out
entirely or under-represented, without any disregard for their importance – only in
an attempt to keep the path of the design inquiry in check.

I look at all aspects of AI research as different schools of thought in understand-
ing what intelligence is at large – natural, human, synthetic or a combination –
and, furthermore, how individual intelligences relate, bearing in mind that no in-
telligence can truly exist individually. Framing intelligence in terms of a technical
problem – without downplaying the importance of the amazingly complex techni-
cal aspects and solutions that it requires, and even when adopting a strictly prag-
matic approach – is neither sufficient nor adequate in the midst of the third "AI
spring"1. Paradoxically, the insufficiency of purely technical approaches comes to
light with largely technical breakthroughs in AI and robotics, bringing autonomous

1Bughin, Hazan. (2017, August 21). The new spring of artificial intelligence: A few early economies.
In VOX. Retrieved December 14, 2018.

http://134.184.131.111/Papers/Veitas-etal.SmartSuperGrid.pdf
http://134.184.131.111/Papers/Veitas-etal.SmartSuperGrid.pdf
https://arxiv.org/abs/1806.03235
https://arxiv.org/abs/1806.03243
https://arxiv.org/abs/1806.03243
https://voxeu.org/article/new-spring-artificial-intelligence-few-early-economics

172 Chapter 7. Future avenues of application

robots, intelligent services, autonomous vehicles and the like closer to everyday life
and support systems of human society. Formerly distant questions, previously tack-
led only by futurists, philosophers of mind and "die-hard" AI researchers, of what
happens to human society, understanding of self and universe, when synthetic in-
telligence comes close to or surpasses the human level (Goertzel, 2014; Kahrs, 2017;
Nilsson, 2005), gain importance and increasingly manifest themselves in public de-
bate, mainstream culture and policy decisions. For example, by the end of 2018, the
main economies of the world had recognized the magnitude of the socio-economic
impact of AI development and adoption, and announced their strategies for govern-
ing AI research, industrial policy and legal infrastructure2. Most of these strategies,
apart from caring about national competitiveness and preparing for socio-economic
changes, also consider ensuring ethical and legal frameworks. It is increasingly re-
alized that AI strategies and policies are directly associated to understanding and
defining intelligent behaviour that is not solely human-embodied. Consequently,
the issues of legal person-hood of artificial intelligence and liability of distributed
intelligences (embodied and virtual alike) have repositioned themselves from the
domain of purely academic research (Karnow, 1996; Solum, 1991) to pressing social
governance matter and legal debate (Cath, 2018; Pagallo, 2018; Solaiman, 2017). This
emphasizes the importance of conceptual aspects of seemingly technical questions,
which in some cases go as far as proposals for establishing a notion of electronic per-
sonhood for advanced autonomous robots (European Parliament, 2017). I believe
that the depth of how these issues are approached in the public debate, in social,
economic, and technological governance, in education and, finally, in design and
engineering, is of utmost importance for setting the direction of the long-term socio-
technological development of human society.

Considering the level of embeddedness of AI systems – embodied, virtual and
decentralized alike – in society, they are no longer only technological, if they ever
were, but socio-technological and economic. The socio-economic repercussions of
disruptive technological developments, as much as they are important, are only one
aspect. Another aspect is that operation, usage and further development of the
socio-technological is interactive, evolving and open-ended, which becomes more
important with the increasing autonomy of technical objects. The underlying dy-
namics of our socio-technological systems is no longer based on creating tools that
merely replace or enhance human capabilities, but on those that have or develop
capabilities substantially different from ours. In order for such technologies to be
continuously integrated into the fabric of society, influence and be shaped by it, it
should constitute an integral part of the rich ecology of participatory sense-making,
where humans interact with humans, technologies interact with technologies, and
technologies interact with humans. Such ecology is best approached in the light of
the actor-network theory of Latour (2007) and philosophy of individuation and tech-
nology by Simondon (1980, 1992) in terms of a genesis of fluid individuals of hybrid
nature and the framework of scalable individuation of social assemblages composed
of humans and technical objects.

The following extended quote from Gilbert Simondon’s complementary doctoral
thesis on the mode and existence of technical objects describes well the significance
of the approach to intelligence as the totality of individuating interactions among a
population of partially determined fluid natural and artificial identities:

2Dutton, T. (2018, June 28). An Overview of National AI Strategies [Blog Post]. Retrieved January
18, 2019.

https://medium.com/politics-ai/an-overview-of-national-ai-strategies-2a70ec6edfd

7.2. Prospective domains of application 173

Culture behaves towards the technical object much in the same way as a man caught
up in primitive xenophobia behaves towards a stranger. This kind of misoneism di-
rected against machines does not so much represent a hatred of the new as a refusal
to come to terms with an unfamiliar reality. [... But] culture fails to take into account
that in technical reality there is a human reality, and that, if it is fully to play its role,
culture must come to terms with technical entities as part of its body of knowledge
and values. Recognition of the modes of existence of technical objects must be the
result of philosophic consideration; what philosophy has to achieve in this respect
is analogous to what the abolition of slavery achieved in affirming the worth of the
individual human being. [...] Idolators of the machine generally assume that the de-
gree of perfection of a machine is directly proportional to the degree of automatism.
Going beyond what can be learnt from experience, they suppose that an increase in
and improvement of automatism would lead to the bringing into oneness and mutual
interconnection of all machines – the creating of a machine made up of all machines.
[...] Automatism, and that use of it in the form of industrial organisation which we
call automation, has an economic or social, rather than a technical, significance. [...]
The real perfecting of machines, which we can say raises the level of technicality, has
nothing to do with an increase in automatism, but, on the contrary, relates to the fact
that the functioning of the machine conceals a certain margin of indetermination. It is
such a margin that allows for the machine’s sensitivity to outside information. It is
this sensitivity to information on the part of machines, much more than any increase
in automatism that makes possible a technical ensemble. A purely automatic machine
completely closed in on itself in a predetermined operation could only give summary
results. The machine with superior technicality is an open machine, and the ensemble
of open machines assumes man as permanent organizer and as a living interpreter of
the interrelationships of machines (Simondon, 1980, p. 3-4)3.

Open-ended decentralized computing is a computational model for engineering
open machines and their assemblages. In this model the element of indeterminacy,
described by Simondon (1980), is expressed in terms of non-deterministic computa-
tion. It allows open machines to be sensitive to uncertainty and irregularities which
are then progressively solved via interactions within their milieu with other natu-
ral, synthetic intelligences and technical objects. This ability of machines and tech-
nical objects to resolve indeterminacy via interactions becomes crucially important
in the domains of socio-technological development where engineered systems en-
joy increasing levels of automation and autonomy. The following section discusses
domains of socio-technological development where the open-ended decentralized
computing model is most applicable.

7.2 Prospective domains of application

7.2.1 Smart mobility and cooperative intelligent transportation systems

One of the fastest developing areas in the domain of autonomous robotics and artifi-
cial intelligence with a potential for large-scale deployment in the short or medium
term is that of self-driving technologies and smart mobility systems. The transition,
already begun, of conventional transport systems and infrastructure to collaborative
intelligent transportation systems, based on self-driving technologies, ubiquitous
connectivity and traffic management with minimal human intervention, promises
the first social integration of advanced AI of such magnitude (Veitas and Delaere,

3Italics added by me.

174 Chapter 7. Future avenues of application

2018a). The development of the technology of the connected car emphasizes partic-
ularly well the pragmatic value and applicability of open-ended intelligence philos-
ophy and the open-ended decentralized computing model.

First, consider an autonomous car (see Figure 7.1a). This is a car able to make au-
tonomous decisions based on the immediate data collected from a number of in-built
sensors (cameras, Lidar, GPS units) which replace and enhance human drivers’ skills
and senses. A connected car (Figure 7.1b) is the notion of a road vehicle which uses
electronic communication technologies for communicating with the driver, other
cars and their drivers, pedestrians, road, city, global and local informational infras-
tructure, traffic managers and more. Such vehicles, including individual or shared
cars, shuttles, buses and trams, are envisioned to be able to make collective driv-
ing decisions informed by the broad context of the traffic situation at different dis-
tances around them. These decisions are made by integrating data not only from
internal sensors, but also from the driving decisions of other vehicles, congestion
situations on potential travel trajectories, meteorological conditions as informed by
"smart city" sensors and many more. Obviously, the vision of a full-blown connected
car is closely related to the promise of the internet of things – a global network of
interconnected cyber-physical devices. An autonomous car, which is also connected,
becomes a connected autonomous car.

The notion of the collaborative intelligent transportation system (C-ITS) denotes
an integrated yet fluid system of connected autonomous cars communicating with
each other, road infrastructure, and other C-ITS systems. One of the features of
C-ITS is cooperative awareness, which refers to automated driving scenarios where a
vehicle’s local decisions are based on the integration of global data and intelligence
(Veitas and Delaere, 2018a). Note that, on the conceptual level, C-ITS is a clear case
of distributed intelligence (see Section 2.1.3), an approach that is not unknown in
transportation systems research informed by self-organization and stigmergy (Ger-
shenson, 2011). The magnitude of prospective C-ITS’ economic and social benefits
is crucially dependent not only on automation and cooperation between individual
vehicles, but – even more so – on effective vehicle sharing schemes and integration
of different transport modalities – taxi pools, on-demand passenger cars, road, water
and air transportation (Veitas and Delaere, 2018b). The user-centric perspective to
intelligent transportation systems is captured by the notion of smart mobility, which
refers to a system that offers integrated yet personalized "mobility as a service". Ide-
ally, a smart mobility system should be able to offer the user the best local trans-
portation service, with a trajectory and single payment system which integrate all
available modalities and vendors. Since the transport sector accounts for a consid-
erable share of a country’s economy and intelligent transportation systems promise
to solve many of the current inefficiencies4, a number of large scale C-ITS and smart
mobility projects are close to fruition in many countries5.

Let us now consider at a more conceptual level the difference between an au-
tonomous and connected car. Regular modern cars are controlled by a large stack

4For example, it is estimated, that currently, an individual vehicle is used on average about 5%
of time, while the rest of the time it occupies a parking space. An increase of this percentage via
smart mobility solutions would greatly reduce the need for private and public investment into the
transportation system, as well reducing the ecological footprint of the whole ecosystem of industries.

5The start of large scale deployment of collaborative intelligent transport systems is targeted for
the year 2019 in the European Union; standardization initiatives and pilot projects are actively being
carried out in US, Japan, Singapore, South Korea, China and New Zealand (Weeratunga and Somers,
2015).

7.2. Prospective domains of application 175

of distributed software that executes more than 50 interconnected electronic control
units (ECUs) – devices responsible for overseeing, regulating and altering the oper-
ation of the different subsystems of a vehicle (Van Bulck, Muhlberg, and Piessens,
2017). Autonomous vehicles may contain hundreds of such nodes, communications
between which determine the functionality, automation level and behaviour of a ve-
hicle. Connected cars will operate by integrating the information from internal nodes
– from inside a vehicle – and external nodes – from other vehicles and IoT devices
(Veitas and Delaere, 2018a). Contrary to the relatively static and known-in-advance
internal network, the external network will be very dynamic and constantly chang-
ing, simply due to the movement of the car. In other words, the control system of
a connected car will be a perpetually changing fluid assemblage of interacting units
and nodes, constantly making decisions about which data and nodes to include in
its trusted network and which information to take into account when making driv-
ing decisions. The presence of a "core" internal network in such a car does not un-
dermine the fact that the system, in terms of the decision-making capacity, is a an
open machine in the Simondon (1980) sense and an extended synthetic cognitive
system, capable of change as influenced by external context and information. The
intelligence and autonomy of such a car is no longer solely contained in internal
algorithms and subsystems, but crucially depends on interaction with the world.

(A) A control system of an autonomous car is composed
of a network with hundreds of interacting compo-
nents, where smooth and fast interaction is critical.
The types of component range from mission-critical
sensors and actuators of a regular car (e.g. on throt-
tle and brake pedals, engine, wheels, windows) to
cameras, Lidar units, radars and other sensors needed
for autonomous driving. Raw data collected by these
nodes is often recorded for legal (e.g. crash investi-
gation) and technical (e.g. perfecting machine learn-
ing models) purposes, as well as shared among con-

stituents of the larger ecosystem.

(B) A regular or autonomous car becomes
connected when embedded into the larger
IoT network of external sensors and ac-
tuators: mobile devices, road infrastruc-
ture, other cars, traffic operators, charging
stations, possibly manufacturers or tech-
nical support services, all of which can
communicate among themselves. Note
that even regular modern cars feature in-
tegration with mobile phones and down-
loadable applications, which technically

makes them connected.

FIGURE 7.1: Autonomous and connected car networks.

Figure 7.1 provides a very high level overview of autonomous and connected
car networks. No less interesting from the perspective of open-ended decentralized
computing is the lower level operation of these networks – i.e. how communication
of components is actually ensured. A good way to appreciate the paradigm shift
is by looking at the historical evolution of vehicular networks. Since components
necessarily interact with each other, the first approach was to connect them in peer-
to-peer fashion with each other. This is very inefficient as it drives the number of
connections to grow exponentially each time a new ECU is added to the network,
which happens on a regular basis given the fast development of automotive tech-
nology (Tuohy et al., 2015). In the mid 1990s, a bus-based controller area network
(CAN) was developed which allows all ECUs to be connected into a physical bus
and communicate via passing messages to each other (Van Bulck, Mühlberg, and

176 Chapter 7. Future avenues of application

Piessens, 2017). Conceptually it therefore can be seen as a kind of message-passing
system, albeit still fairly rigid. Speed and correct functioning of the CAN-bus is
mission and safety critical for the operation of a car, and therefore it was kept her-
metically sealed from infotainment network when the latter was introduced. Yet,
with the rising complexity and integration level of infotainment systems, this is
no longer true and therefore regular modern cars essentially became de facto open
systems6 raising serious security issues (see Section 7.2.2 below). Furthermore, the
growing number of ECUs due to the introduction of increasingly advanced levels
of autonomous driving and C-ITS capabilities greatly increase the complexity and
openness of a vehicular network. A spontaneously established network of several
connected cars and road units forms a so-called vehicular ad-hoc network (Mejri,
Ben-Othman, and Hamdi, 2014). Clearly, the architecture of vehicular networks has
evolved from closed systems with a few known components into open systems with
many components, some of which are unknown and spontaneously changing. In the
general system theory of Bertalanffy (1968), an open system is defined as a "system in
exchange of matter with its environment, presenting import and export, building-up
and breaking-down of its material components" (ibid., p. 141). Contrariwise, closed
systems are considered to be isolated from their environment. This distinction is
analogous to the one of closed and open machines by (Simondon, 1980). The precise
computational formulation of the distinction between these two types of systems is
proposed on pages 89-90 in terms of the notions of open and closed computing.

Open systems, by the nature of their operation, naturally lend themselves to
the models of interactive computation, especially with location and mobility ex-
tensions (see Section 5.1.3). The interactivity of decentralized ad-hoc vehicular net-
works involves considerable uncertainty and nondeterminism in a system with fluid
boundaries, which is precisely what open-ended decentralized computing model
addresses. From the general computational perspective, an ad-hoc vehicular net-
work of open in-vehicular networks is a flexible scalable structure of computational
processes. It is equivalent to an assemblage of lower level assemblages (see Figure
4.6), which is one of the bases of the open-ended decentralized computing model.

We have discussed here autonomous, connected cars, C-ITS and smart mobility
systems because they are aspects of the closest to fruition large scale deployment of
AI. The advanced implementation phase of these already available technologies pro-
vides an array of seemingly "only" technical issues, solutions to which demonstrate
the importance of conceptual paradigm shift from closed to open system thinking.
Note, however, that most of the concepts discussed above also apply to autonomous
advanced robots and AIs in general. A self-driving vehicle is an autonomous robot
with a specialized interface for interaction with humans and established infrastruc-
ture. Similar principles apply to other advanced systems interacting with humans in
a large network – for example healthcare robots – including autonomous and coop-
erative awareness, connectedness, internal, external sensors and, most importantly,
interaction and openness to the world which makes them collectively intelligent.

6For example, a simple functionality of the audio system which allows the sound to be automati-
cally increased or decreased depending on the speed of a vehicle breaks the barrier between CAN-bus
and infotainment-bus; note additionally the ability to synchronize mobile phones with infotainment
systems in order to appreciate the fact that CAN-bus is no longer hermetic (Jan Tobias Mühlberg (2017),
private conversation).

7.2. Prospective domains of application 177

7.2.2 Distributed trust, privacy and security

The paradigm shift from closed to open systems thinking in engineering also has
a deeply impacting change to how we approach issues of privacy, security and
trust management. Closed systems by definition have clearly definable boundaries
through which they interact with the world, users and other systems. Tradition-
ally therefore, these boundaries implement security measures for shielding a system
from undesirable external influences. Generally, when this shield is broken, or when
a malicious actor is able to circumvent it, the whole system is compromised and can
no longer be trusted to behave as designed. The picture changes considerably when
considering open systems. First of all, open systems do not have clearly defined
boundaries and therefore the security shield metaphor is not applicable. Second,
open systems can potentially interact with many external actors with initially un-
known trust levels. Such systems therefore need to have a dynamic mechanism for
selecting relevant and trustworthy interactions from many possibilities. We turn
again to the example of a connected car for practical illustration.

As introduced in the previous section, modern regular cars feature mission crit-
ical CAN-bus, the security of which is paramount to the safe operation of the car,
and an infotainment-bus, which can connect to external inherently insecure systems
and networks (e.g. internet). The historically determined logic of looking at a car
as a closed system leads to the need for strict separation between CAN-bus (closed
subsystem) and infotainment-bus (open subsystem) where any leak of information
between the two compromises the security of the whole car. Yet, due to the aspects
mentioned above, such separation is available only in theory. It has been repeat-
edly demonstrated that it is possible to break remotely into the wireless network of
a car and assume full control of its mission critical functions by attacking software
(i.e. infotainment bus) which is not considered safety-critical but itself interacts with
critical components (Miller and Vasalek, 2015). The same has been demonstrated
for insulin pumps and general hospital equipment (Noorman et al., 2017) and rep-
resents a general problem of smart equipment engineering which spans industries,
vendors and models. The "closed system thinking" type response to these issues is to
secure the critical components more tightly by putting additional software or phys-
ical barriers between closed and open subsystems. Yet, considering even current
complexity and desired functionality of in-vehicle networks, such strict compart-
mentalization is no longer possible. These systems have to be treated as fundamen-
tally open and therefore engineered as such, especially taking into account techno-
logical developments towards the connected car, C-ITS and autonomous connected
robots in general.

Let us see how the shift in conceptual perspective influences actual engineer-
ing decisions. An open system has to establish and ensure secure communications
and trust among its vital components, assuming that the network, over which com-
munications happen, itself is untrustworthy. In general computational terms, this
is equivalent to the Byzantine Generals’ Problem of distributed computing (see Box
4.1) where generals (ECUs) communicate via messages in an untrusted environment
(CAN-bus) without reliance on the system-level trust provider (the security shield
between CAN-bus and infotainment-bus). Note also that, in terms of a trust model,
the presence of a system-level trust provider makes a system centralized, while oth-
erwise it is decentralized (see Section 4.3 for the discussion on the "conundrum of
decentralization"). Secure communication among decentralized components gives
rise to the functionality of a system, which can be represented by a well formed

178 Chapter 7. Future avenues of application

computation graph (see Figure 4.5). In summary, the in-vehicle network of interact-
ing components (ECUs) corresponds to built-in complete synchrony and consensus
in terms of the open-ended decentralized computing model (see page 103) and a
structured computation graph.

The security of messages in such a system should be ensured separately for each
communication link and communicating component. For that purpose technolo-
gies which allow securely encrypted ultra-low latency peer-to-peer communication
channels to be established between any ECU in a car are actively developed. These
technologies ensure that encryption keys are known only to communicating compo-
nents and no third party can access or alter the contents (Noorman et al., 2017; Van
Bulck, Muhlberg, and Piessens, 2017). Furthermore, each component can carry a
unique and unclonable identifier, which is physically derived from its hardware and
acts as an encryption key (Herder et al., 2014). The fact that each communication
channel can be read and written only by the directly connected nodes themselves,
makes the system decentralized in the strict computational sense, where by default
there is no global observer which can establish the total order of messages (see Sec-
tion 4.5.2).

Bottom line, the evolving in-vehicular networks of autonomous cars and ad-hoc
vehicular networks of collaborative intelligent transportation systems are examples
of physical implementations of fluid assemblages within populations of indepen-
dent, yet more or less strictly coupled processes following principles of open-ended
decentralized computing. This also holds in the larger context of internet of things,
where different subsystems can be directly or indirectly organized according to the
same principle.

7.2.3 Internet of things and data economy

The term internet of things (IoT) was arguably coined in 1999 in the context of at-
taching radio frequency identifiers (RFIDs) to physical items for managing the sup-
ply chain of a multinational consumer goods corporation. Yet currently it is used to
denote, in simple terms, the connectivity of almost all imaginable types of technical
objects without direct reference to RFIDs or any other specific technologies (even in-
ternet protocols). The inclusion of huge number of different cyber-physical systems
into the internet as first class citizens directly grounds the informational network in
the physical world (Ashton and others, 2009). Conceptually, IoT is a population of
heterogeneous interacting autonomous agents of unprecedented scale and diversity,
where data produced and consumed by humans corresponds to only a small share
of overall traffic. Examples of networks of such scale and diversity can be found only
in natural systems, such as pollen distribution, ant colonies, redwood and rainforest
ecosystems (daCosta, 2013). These systems are not and cannot possibly be governed
in a centralized manner and are therefore radically decentralized by necessity. Com-
putationally, we can model the structure and operation of these networks and their
ecologies within the open-ended decentralized computing framework.

Consider for example, the model proposed by daCosta (2013). There, IoT is envi-
sioned as a network of diverse nodes, which can be categorized into four main types
by their function in information processing and propagation pipelines (see Figure
7.2a). End devices are the smallest and simplest, yet by far the most numerous nodes
of the network: temperature, moisture sensors, valve controls, parking meters, home
appliances, RFID tags and more. They are almost completely autonomous, having

7.2. Prospective domains of application 179

their own small power source and sending information even if nobody is listening.
Furthermore, these are very simple devices: without processor, memory, hard drives
and power to accommodate full protocol stack and connect to the internet via their
own addresses. Finally, end devices are unreliable by nature, ending operation due
to an interrupted power source, a defect or simply because nobody cares to maintain
or even monitor them due to their low cost. Yet the power of these devices is in their
number and great redundancy7. End devices can be likened to pollen – a lot in num-
ber, randomly scattered by the wind, but able to "find" and pollinate specific species
of plants across vast areas. Propagator nodes are more complex devices, responsible
for finding, aggregating, annotating, maybe cashing and temporarily storing infor-
mation from "smart particles". Since end devices use many low-power wireless pro-
tocols that are not directly connectable to the internet (see Figure 7.2b for a small
sample), propagator nodes house a number of protocol stacks in order to collect this
information and make it accessible to the broader network. Importantly, both end
devices and propagator nodes will not have stable a priori established connections
between each other: end nodes will simply beam small information packets at a slow
rate, while propagator nodes will find them and propagate them to the internet ei-
ther directly or through their own ad-hoc mesh networks. Integrator functions are a
type of more conventional devices or programs that offer advanced analysis, control
and human interfaces through a connection to the conventional internet. Further-
more, depending on volumes and velocities of a particular data stream, filter gate-
ways may be introduced between the internet and integrator functions in order to
clean, reduce, or filter data stream by selected properties.

(A) IoT as a mesh network composed of five com-
ponents: (1) end devices of low power (mostly sen-
sors), (2) propagator nodes (connecting cheap end
devices to the internet) (3) internet (4) filter gate-
ways (selecting relevant) and (5) integrator func-
tions (summarizing data into human-usable infor-
mation). Note that each node type is a process with
inputs and outputs, as defined in Section 4.5.1 on

page 107.

(B) A small sub-set of IoT end device
types and their diversity as characterized
by: (1) data source/sink type, (2) memory
size, (3) frequency of signals (4) signal repeti-
tion rate, (5) speed of data transmission and

(6) physical transmission layer.

FIGURE 7.2: IoT device types and structure. Adapted from daCosta
(2013).

Note that each device of Figure 7.2 is essentially an agent with a process that
turns inputs into outputs – an elementary component of the open-ended decentral-
ized computing model (see Section 4.5.1). Information packages – small, larger or

7daCosta (2013) gives an example of a bridge which is being monitored by spreading on it thou-
sands of solar-powered vibration sensors. Each sensor is programmed to transmit information once in
several minutes or even an hour; furthermore, some sensors will "skip the beat" due to shadow, pass-
ing vehicles or other reasons. Yet the aggregated time series data of all sensors can provide adequate
information about the state of the bridge at any moment in time.

180 Chapter 7. Future avenues of application

many aggregated together – are messages passed via the links of diverse types be-
tween nodes in the overall network. Importantly, while all devices are parts of a
giant network, actual functionalities are due to specific propagation paths of infor-
mation from end devices to integrator functions and possibly the other way round.
These largely self-organized and dynamic paths give rise to multiple communication
and, therefore, computation graphs – snapshots of immediate configurations of ad-hoc
assemblages of network devices. Conceptually, therefore, the internet of things is a
vast population of heterogeneous interacting agents and processes which form ad-
hoc and fluid assemblages of different functionalities, expressed by their computa-
tion graphs. The mechanism of coordination and synchronization in the population
can take different forms for different assemblages – e.g. in-built cryptography-based
private networks, coupled via blockchain-based smart contracts or guided via the
OfferNets type architecture. The economic model will most definitely be an im-
portant aspect of the internet of things, where end devices, propagator nodes and
integrator functions could belong to different owners, require resources for opera-
tion and, therefore, can be seen as agents performing works, which offer outputs
and demand inputs in a similar manner as in the offer networks model (see Chapter
6). Collective intelligence of the internet of things will emerge from the functionality
of ad-hoc assemblages and interactions between them, rather than being due to the
sheer number of nodes, devices and their ubiquitous connectivity.

7.2.4 Energy markets

The smart grid is a decentralized and distributed system from both a technical and
governance perspective (Veitas et al., 2015). When fully implemented, it will be an
ecosystem of power generators of different sizes and types (traditional large power
stations, wind and hydro turbines, solar batteries of power plants and individual
homes, fusion devices, etc.). Small power generation capacities will be associated
with the new type of market player – prosumers – which will both consume and
produce energy and trade their daily balances with other prosumers directly or via
the global network. Energy balances of most prosumer households will oscillate
between the roles of net producers and consumers, depending on usage patterns,
actual power generation, and availability of wind or sun. Prosumers may be in-
terconnected into medium-sized local networks – microgrids – where they can trade
energy balances among themselves. Further, microgrids will be connected to the
global energy distribution network, mostly by means of high-voltage lines. They
will then offload or demand power from the global network depending on their ag-
gregated balances. High voltage "backbone" networks, while retaining some level of
current central control and coordination because of their economy of scale, will be
complemented and partially substituted by organically assembling local networks.
The smart grid will be equipped with remotely accessible smart meters and syn-
chrophasors (i.e. IoT end devices), collecting data that is available not only for a
single central data processing unit or power distribution company, but for the entire
network of prosumers. It will allow any entity in the electricity market, be it an eco-
nomic player or an automated technology, to access and analyse the data from the
perspective of its local context. Any electrical appliance, storage or generation unit
connected to the smart grid will in principle be able to autonomously negotiate terms
of individual electricity supply or demand and in that sense to be an autonomous
agent.

7.2. Prospective domains of application 181

(A) Centralized structure of the traditional
power grid.

(B) Decentralized structure of the smart
grid.

FIGURE 7.3: Transition from traditional power grid to smart grid.

While traditional power grids typically consist of hierarchical structures that
make strategic and operational decisions in top-down manner, the smart grid, as
a fluid and adaptive system, cannot function in the context of centralized command-
and-control. The industry transition from hierarchical governance to the self-organizing
nature of decentralized smart grids is hugely challenging technically, managerially
and governmentally. Note, however, that from the conceptual and computational
perspective, both smart grid and a traditional power grid can be represented in
terms of the open-ended decentralized computing model and are quite close to the
general offer networks domain model. Over and above interacting heterogeneous
agents (power generators, storage units, including electric cars), their assemblages
(prosumer households and microgrids) and a stable network structure (low and high
voltage lines), smart grids will house an economic exchange network where differ-
ent participants will demand (input) and offer (output) energy at different prices,
times, locations (for example, an electric car can supply and demand energy from its
batteries) and possibly other conditions (e.g. sourced from alternative and ecologi-
cal producers). Such economic networks may or may not use traditional money or
barter and nodes will have to engage in direct negotiation before transaction. Fur-
thermore, certain patterns of energy exchange within microgrids or larger networks
may stabilize corresponding to a persistent ad-hoc assemblage.

7.2.5 Cloud, edge and fog computing

Notions that are inseparable from the ecosystem of the internet of things are cloud,
edge and fog computing. These notions denote layers of infrastructure for powering
increasingly complex and interconnected, via the internet, computational resources
of global society and economy (see Figure 7.4). Cloud computing refers to the infras-
tructure that allows a user to hire computing power, database storage, applications
and other IT resources physically housed in remote and dedicated data centres. It
allows the purchase of computing resources as an on-demand service without the
need to care about maintaining or updating the hardware. Fog and edge comput-
ing are related and often used interchangeably notions which together mean the
push of computing power and machine intelligence closer to where data originates,

182 Chapter 7. Future avenues of application

i.e. end devices of the internet of things (see Figure 7.2a). However, edge comput-
ing also considers devices which are powerful and fully-fledged computers, such as
smartphones, tablets, connected cars and more. Cloud, fog and edge computing are
different aspects of the same global computing infrastructure and network, and are
therefore best approached by looking at their relations rather than by considering
them separately.

FIGURE 7.4: Relationship between cloud, edge and fog computing in
the IoT architecture. Adapted from PubNub (2017).

Consider all computing devices connected to the global network through the
internet or otherwise (as in Figure 7.2b). We can see this infrastructure as one gi-
ant computer, albeit quite chaotic, decentralized and performing many different
computations which are not synchronized with each other. From this perspective,
the computing industry’s technological trends towards and away from centralized
mainframes (1960-1970), distributed client–server (1980-2000), centralized mobile–
cloud (2005-2020) and distributed edge intelligence (2020-) (Levine, 2016) are best
understood by considering the fundamental principle of decentralized computing
(see Section 5.1.2). First, recall that, from the computer-scientific view, any compu-
tation and its logics can be represented as a graph of information and data flows
between elementary processing units (see Figure 4.5 on page 98). The global com-
puting infrastructure allows the distribution of multiple computation graphs archi-
tecturally and physically, depending on the time and memory requirements of each
individual processing unit, their assemblages, and the speed and bandwidth of links
among them. A computing system assembled within this infrastructure is concep-
tually equivalent to scalable and structured assemblages of Turing (1948) machines
(see Figure 4.6), which furthermore can interact with each other in different ways.
Obviously, the fast development of information technologies in terms of reduced
processor sizes8 and data transfer networks’ speed and capacity9 have changed the
processing–storing–communication balance when assembling efficient computing
graphs.

A far reaching implication, which is partially reflected in cloud, fog and edge
computing related trends in information technologies, is the possibility of leverag-
ing location awareness and mobility of individual processes within a computing
graph. That is, implementation of computational reflexivity, location awareness and

8Modern mobile phones are at least 1000 times faster and have 80 times more memory than state-
of-the art mainframe computers of 1970 (Love, 2014).

9Fiber optical connections of gigabit speed (1GB/s) start to be routinely offered by internet service
providers; fifth generation (5G) cellular service can achieve 10GB/s data rates and sub-millisecond
guaranteed latency, which allows to use it in real time mission critical applications (e.g. connected
autonomous driving).

7.2. Prospective domains of application 183

mobility, as described with the open-ended decentralized computing model, would
allow self-organization and fluidity of computing graphs within IoT with minimal
human intervention. It could power synthetic cognitive development processes (see
Section 3.3.3) leading to the ecosystem of computing networks with various levels
of intelligence in the spirit of the global brain (see Section 2.1.3). Examples of soon-
to-be-deployed and current computing ecosystems which use mobility and location
awareness functionality are connected cars (see Section 7.2.1) and mobile applica-
tions (e.g. mobile games), where processing of the same computation is shared be-
tween end devices and servers.

7.2.6 Decentralized applications and computing frameworks

Decentralized applications are software programs which run on architecturally or log-
ically decentralized peer-to-peer computing frameworks and networks. Depending
on the business domain and logic of such programs, they are referred to as decen-
tralized organizations (DOs), automated agents (AAs), decentralized autonomous
organizations (DAOs) and decentralized autonomous corporations (DACs), all re-
lated by the same concept (Raval, 2016). The concept has been lately popularized
by blockchain technology and the Ethereum smart contract ecosystem (see Schnei-
der (2014) and Box 4.1). The ideological roots of decentralization of governance
are centuries old, while technological parents of modern decentralized applications
are the world-wide-web information management network (Berners-Lee, 1989) and
early peer-to-peer content distribution networks such as eDonkey2000 (introduced
in 2000)10, Kademlia (2002)11 or BitTorrent (2001)12. Within the scope of this work
we take a conceptual and computational perspective to decentralized applications
which lets us abstract them from their immediate ideological and technological as-
pects.

First, note that the concept necessarily involves two aspects: (1) the decentralized
applications with specific business logic and (2) the computational framework which
executes them. This distinction is important when the framework can handle the ex-
ecution of not just one but potentially millions of decentralized applications running
in parallel. This is precisely the idea of the Ethereum virtual machine (EVM)13 – the
global architecturally decentralized and logically centralized computer. Architec-
turally, EVM is executed on the decentralized network of independent computing
systems and data centres scattered around the world. All nodes of the network run
the same software which together implements the Turing (1937) computation model
in a parallelized way. Note that the same model can be represented as an emerging
global synchrony and consensus within the open-ended decentralized computation
model (see Section 4.4.1) owing to the fact that the Turing (1937) model is a special
case of actor model (Hewitt, 2006). Another innovation of EVM is the economy of
computational processes, where each storage and invocation of a distributed appli-
cation code costs a certain amount of special-purpose cryptocurrency. Applications
can potentially invoke and compensate other applications which are stored on the
same network as well as cover their own usage of processing cycles. These function-
alities in principle allow the concept of organized networks of decentralized profit
seeking autonomous agents in an economic ecosystem.

10https://en.wikipedia.org/wiki/EDonkey2000
11https://en.wikipedia.org/wiki/Kademlia
12https://en.wikipedia.org/wiki/BitTorrent_(software)
13Other blockchain based projects of similar nature are EOS, NEO, Cardano and Hyperledger Fabric.

https://en.wikipedia.org/wiki/EDonkey2000
https://en.wikipedia.org/wiki/Kademlia
https://en.wikipedia.org/wiki/BitTorrent_(software)
https://eos.io/
https://neo.org/
https://www.cardano.org/en/home/
https://www.hyperledger.org/projects/fabric

184 Chapter 7. Future avenues of application

The open-ended decentralized computing model is based on actor model and
graph computing, which allows the implementation of decentralized application
frameworks in terms of interactive (see page 93) and stigmergic computing (see Sec-
tion 4.5). It features self-organizing coordination among distributed applications
leading to emergence of assemblages of applications with new functionalities. Such
self-organization can be supported by a customizable and flexible economic model
(see Section 5.1.3). Decentralized application frameworks which explicitly or implic-
itly follow actor model and are currently in active development include Holochain14

and SingularityNET15.

7.3 Summary of the chapter

This chapter presents and discusses six domains of current socio-technological de-
velopment and their problematic where I deem the perspective informed by the
open-ended decentralized computing model and the notion of the "open machine"
most valuable. These domains include smart mobility, distributed trust and privacy,
internet of things, energy markets and smart grid, cloud, edge and fog computing
and, finally, decentralized computing frameworks in general. They by no means
cover all possible applications of the computation model, but seem to be most rel-
evant – where the value of the paradigmatic shift that the model proposes is most
apparent and readily applicable.

14https://holochain.org/
15https://singularitynet.io/ (this work was supported by SingularityNET Foundation – see Ac-

knowledgements on page v).

https://holochain.org/
https://singularitynet.io/

185

Chapter 8

Summary and conclusion

8.1 Summary

Let us now summarize the path of our design inquiry into the operation of intelli-
gence throughout this work and in the light of the image of "open machine".

Chapter 2 surveys selected concepts, techniques and currents of theoretical and
pragmatic thinking in the domain of the evolution of mind, brain and body. It con-
cludes that a cognitive architecture, open in the Simondonian sense, has to: (1) allow
identities of cognitive agents to be assembled from a population of lower level inter-
acting elements, (2) account for the ability of cognitive agents to modulate their own
sensitivity to environmental interaction, (3) perpetually balance between ordered
and disordered states depending on the requirements of this interaction, (4) support
the emergence of functional and structural hierarchies, which act (5) as stabiliza-
tion of patterns of communication among internal and external elements (6) via the
mechanism of progressive determination.

Chapter 3 introduces and discusses the open-ended intelligence framework and
the philosophy of individuation which integrates the still somewhat isolated princi-
ples and aforementioned requirements into the conceptual scheme of synthetic cog-
nitive development. The process of individuation of intelligence happens within a
population of interacting primitive elements or agents when patterns of interactions
among them stabilize and become more or less persistent. The emergence of stable
patterns is driven by signification of meaning of signals and selection of mutually
meaningful communications between elements of the population, where meaning is
intrinsic to communicating parties only. These patterns give rise to assemblages of
different levels of consolidation that correspond to fluid individuals. Furthermore,
fluid individuals – partially persistent assemblages of elements – are characterized
not only by structured interactions inside their assemblages, but also by structured
interactions, across their borders, with other members of the population. Such in-
dividuals, embodied or purely computational, are precisely the open machines re-
ferred to by Simondon (1980) above. The external elements with which an assem-
blage interacts across its boundaries constitute together the environment and milieu
of a fluid individual.

Assemblages of elements – i.e. fluid individuals – are determined via a history-

186 Chapter 8. Summary and conclusion

dependent evolutionary developmental process where interactivity of elements cre-
ates patterns that influence their further interactivity and in this way give rise to the
mechanism of progressive determination. This mechanism describes an abstract yet
fundamental process of the individuation of cognition, where function determines
structure and structure determines function in a progressive way. The process of
progressive determination is not directional and can lead to both integration and
disintegration of patterns of communication and therefore different levels of fluidity
of individuals-assemblages. The scheme of synthetic cognitive development depicts
the generalized cognitive development of a cognitive system in terms of sequences
of integration and disintegration of internal and external patterns of communica-
tion. The very openness of fluid individuals to affect and be affected and evolve due
to the interaction via their boundaries implies intelligence.

Chapter 4 applies the computational metaphor to the scheme of synthetic cog-
nitive development and open-ended intelligence in order to construct an imple-
mentable model of open-ended decentralized computing. Concretely, we distin-
guish two notions of computing: closed computing and open computing, where
the former is associated with the classical Turing (1937) computing model and the
latter with the model of interactive computation and the expanded Turing (1948)
model. Further, we position these models in terms of broader notions of central-
ization and decentralization by utilizing the language of network science and the
observation that any computation can be represented in terms of a graph of ele-
mentary processes, linked by relations of information and control flows. This leads
to the important result that a computation graph can represent and, moreover, it-
self be seen as a fluid individual constituted of a population of interacting elements
that is able to embody the process of progressive determination – by giving rise to
different computations as different graph structures. The core of open-ended decen-
tralized computing is precisely this: it is a mechanism for allowing self-organizing
integration and disintegration of observable computation graphs of different struc-
tures out of a population of heterogeneous interacting elementary processes. Impor-
tantly, these structures can be of variable levels of consolidation and determination,
and therefore open and closed to different degrees.

The framework of open-ended decentralized computing not only allows the rep-
resentation of different configurations of computation graphs but, moreover, their
fluid movement and morphing from one configuration to another. We can under-
stand such a framework as a meta-stable landscape representing different configu-
rations of computation graphs. The system, implemented on the basis of the open-
ended decentralized computing model, is meant to be able to reach different con-
figurations via processes of guided or unguided self-organization and interaction
with its environment rather than following a pre-defined algorithm. In order to for-
mally describe such a computation, we utilize the concept of stigmergic computing
– a computational model of generalized stigmergic cooperation. This model features
two components: (1) a computation graph with a fluid structure which is composed
of relations among (2) decentralized, autonomous and heterogeneous computation
processes. The graph acts as a shared stigmergic medium that enables indirect coor-
dination among processes. Processes leave traces of their interactions on the compu-
tation graph which are accessed by other processes that can adjust their behaviours
accordingly. Therefore, these processes determine the structure of the fluid assem-
blage of elementary units of computation. The structure in turn determines further
processes and, in this way, enables progressive determination – the mechanism of
individuation and open-ended intelligence.

8.1. Summary 187

Chapter 5 specifies the semantics of open-ended decentralized computing model
in concrete computer-scientific terms, by combining the actor model with graph
computing. The actor model enables (1) implementation of a population of hetero-
geneous computational processes and (2) direct interaction among them via message
passing. Graph computing enables (1) the indirect interaction of processes via the
shared medium, (2) evolving neighbourhood structure and (3) radical decentraliza-
tion via vertex-centric traversals. Combining these two computation models allow
us to express all the requirements of the mechanism of progressive determination in
a single computational framework:

• The actor model is a mathematical model of concurrent computation based
on a single computational primitive – a communicating actor. In the open-
ended decentralized computing model actors realize elementary components
of a population. Such actors can communicate among themselves via passing
messages to each other.

• When embedded into a graph structure via a graph computing engine, mes-
sages that are passed between actors can be retained as explicit relationships
between actor–vertices, effectively creating traces of prior communication. Ad-
hering to the principles of radical decentralization, actor-vertices are able to
pass messages only though their immediate neighbours. Graph traversal lan-
guages, used for message passing, can nevertheless allow path algebra expres-
sions to be defined, through which the neighbourhood structure of an actor-
vertex can be leveraged to reach any other actor in the system. Furthermore,
such messages–traversals are sensitive to the graph structure which is shaped
by the traces of previous messages.

The semantics of the open-ended decentralized computing model allows the re-
alization of progressive determination and stigmergic computing at a general level,
while actual behaviours and desired dynamics of systems implemented on the basis
of the model depend on domain specific models – as provided by the example in
Chapter 6.

Chapter 6 uses the domain model of a decentralized economic exchange and the
problem of search and matching of multi-dimensionally valued goods for imple-
menting open-ended decentralised computing in terms of an actual working code
and integration of various existing software frameworks. The implementation amounts
to (1) the general simulation modelling engine, (2) monitoring and analysis engine
and (3) selected aspects of custom business logic of decentralized exchange. We
also performed a number of computational experiments of decentralized search and
match for demonstrating the elementary operation of stigmergic computing and the
mechanism of progressive determination. In these experiments, a number of differ-
ent independent concurrent processes interact indirectly via a shared medium – the
graph of which they themselves are a part. Importantly, they point to the funda-
mental trade-off inherent in decentralized computing – that operating in uncertain
environments and domains is by definition more computationally costly than op-
timizing the efficiency of reaching a priori defined goals. This corollary has broad
implications for the design of generally intelligent AI systems able to address novel
situations and problems and come up with creative behaviours – i.e. systems capa-
ble to embrace uncertainty. Furthermore, from an even more general perspective,
the trade-off can inform and direct design and engineering strategies with proper
consideration of desired degree of openness and closeness of any target system.

188 Chapter 8. Summary and conclusion

In a nutshell, this thesis develops the computational model for an open machine,
which holds an element of indeterminacy allowing it to be sensitive to uncertain- ties
and irregularities which arise from interactions with other humans, artificial intelli-
gences and technical objects within its milieu. The intelligence of interacting open
machines, just like biological intelligences, is not defined individually, but rather in
reference to ecologies and societies in which they live. With respect to the domain
of social science, I am of the opinion that the shift in perspective towards consider-
ing a divergent nature of intelligence, cognition and social development, as well as
its deeply participatory and decentralized nature, is of the greatest relevance in the
current acceleratingly developing hyperconnected world.

8.2 Conclusion

Claude Shannon, mostly known for starting the field of information theory is also
considered the pioneer of computer chess as it is known today (Levy, 1988). The
ability to play chess skilfully was considered the core of intelligence from the be-
ginning of the modern quest for creating intelligent machines (Newell, Shaw, and
Simon, 1958) until a special purpose computer defeated the grandmaster Gary Kas-
parov, considered the greatest chess player of all times, in 1997. Shannon, however,
predicted the conceptual issue with which society, faced with the advances of arti-
ficial intelligence, is battling now: "chess is generally considered to require ’think-
ing’ for skilful play; a solution of this problem [by a machine] will force us either
to admit the possibility of a mechanized thinking or to [..] restrict our concept of
’thinking’" (Shannon, 1950). Indeed, the reactions to the historical achievements of
artificial intelligence have consolidated into a "rule of thumb": every time AI proves
itself to be better than the best human in a particular field1, its abilities are after-
wards considered not "real intelligence", despite the appreciation of the same mile-
stone beforehand. Yet, with AI surpassing human capabilities in many tasks and
goals, the somewhat hypocritical game of both denying the possibility of synthetic
intelligence and avoiding revision of the concept of human "thinking", seems to be
reaching a bottleneck due to the game becoming increasingly difficult to play. This
bottleneck can turn into a path and opportunity for intelligence expansion via the
mediation of technology (Veitas and Weinbaum, 2015) or a binary dilemma of "hu-
mans versus machines". In this sense, the quest for creating a synthetic intelligence
is not a technical problem, but related to the embodiment of images of humanity and
intelligence in humanity’s collective psyche. They have a self-reinforcing reflective
power: "images of humankind which are dominant in a culture are of fundamental
importance because they underlie the ways in which the society shapes its institu-
tions, educates its young, and goes about whatever it perceives its business to be"
(Markley and Harman, 1981) including, we may add, the creation of its technical
objects – as closed-ended instruments of destruction2 or open-ended companions in
evolution3.

1This has happened with board games of immense complexity and social skills (chess, go, poker)
as well as a multi-player question answering game played in natural English (Jeopardy!).

2See Wikipedia article on lethal autonomous weapons.
3Hanson, D. (2017, October). Super-smart robots who care. Presentation presented at the “The fu-

ture of everything – Sustainable Development in the Age of Rapid Technological Change" Joint Meet-
ing of the United Nations General Assembly Second Committee and ECOSOC, ECOSOC Chamber,
UN Headquarters, New York.

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://en.wikipedia.org/wiki/Libratus#2017_Humans_versus_AI_match
https://en.wikipedia.org/wiki/Watson_(computer)#Jeopardy!
https://en.wikipedia.org/wiki/Lethal_autonomous_weapon
https://www.un.org/ecosoc/en/events/2017/joint-meeting-ecosoc-and-second-committee-%E2%80%9C-future-everything-%E2%80%93-sustainable-development

8.2. Conclusion 189

Shannon’s contemporaries and the minds behind the inception of the modern
quest for artificial intelligence had already hinted at the importance of developing
two-way communication between computer and human at the end of the 1950s:

Thus it seems that the rise of effective communication between man and computer will
coincide with the rise in the intelligence of the computer – so that the human can say
more while thinking less. But [... until we cannot] train them by the blind procedures
that work with humans we are caught at the wrong equilibrium of a bistable system:
we could design more intelligent machines if we could communicate to them better;
we could communicate to them better if they were more intelligent. Limited both
in our capabilities for design and communication, every advance in either separately
requires a momentous effort. Each success, however, allows a corresponding effort
on the other side to reach a little further. At some point the reaction will ’go’, and
we will find ourselves at the favorable equilibrium point of the system, possessing
mechanisms that are both highly intelligent and communicative (Newell, Shaw, and
Simon, 1958).

Interactivity and coordination – of particles, elementary processes, neurons, eu-
social insects, humans, machines, their assemblages and societies – is the source,
catalyst and outcome of the process of becoming intelligent and the fundamental
tenet of open-ended intelligence philosophy. In this sense, the concept of individual
intelligence and identity is a pragmatically useful narrative: all intelligence is nec-
essarily decentralized and all cognition extended. Following Simondon’s treatment
of the mode of existence of technical objects4 quoted on page 172, we repeatedly
assert in this work that intelligence is defined by openness and interaction rather
than merely by a list, no matter how long and diverse, of skills, properties, abilities
or goals. Intelligence reveals itself at the intersection of uncertainty and the ability
to make sense of it, just like interesting complex systems reveal themselves at the
intersection of chaos and order. When the uncertainty is gone, we no longer see
intelligence, only a mechanical manipulation.

I believe that all AI research perspectives could greatly benefit from this ap-
proach; but particularly the programme of artificial general intelligence and the am-
bition to integrate advanced autonomous technology into culture and society in a
benevolent way. In this there is no undermining of the importance of skills, prop-
erties, abilities and goals or the programme and achievements of narrow artificial
intelligence. On the contrary, skills, abilities and goals are products of the process of
individuation of intelligence, instrumental for driving it further. However, the open-
ended intelligence philosophy and the concept of synthetic cognitive development
invites us to see these products not as final results but only temporary stable phases
within the broader process, which is driven by self-organizing dynamics. Precisely
this approach, if realized through engineering, makes artificial systems – embodying
and enabling different skills and goals – open, able to interact and communicate, and
therefore truly "autonomously" intelligent. The boundaries between the concept and
its implementation are not strict; it is a mistake to separate the conceptual thinking
from the engineering and actuation since they are all mutually reinforcing aspects of
the same design inquiry.

4"Simondon was not merely a philosopher of technology but rather one whose ambition was noth-
ing less than to rewrite the history of philosophy according to the concept of individuation and to
invent a philosophical thinking that could effectively integrate technology into culture" (Barthélémy,
2015).

190 Chapter 8. Summary and conclusion

We can relate natural, artificial systems and technical objects with different lev-
els of openness and autonomy by considering the level of their freedom and con-
straint. The principle of freedom and constraint reflects the quest for understanding
and designing intelligent systems as a "search" for a balance between (1) openness
for change and (2) specific properties in terms of concrete manifestations of intelli-
gent behaviour with respect to a specific context. This is something that evolution –
the process of producing cognitive systems, their forms and embodiments – does by
progressively determining sets of constraints that define these systems. Yet while de-
termining constraints on cognitive systems and their embodiments, evolution never
closes them completely and always leaves a window for change, adaptation and fur-
ther evolution. Importantly, evolution does not start from concrete properties, skills,
goals or survival principles (Weinbaum, 2018, p. 4), which are merely persistent
"side effects" of an open-ended process of individuation. The quest for conceiving,
designing and engineering intelligent systems, however, unambiguously follows the
opposite approach by starting with constraints and relaxing them only when they do
not produce "intelligent enough" behaviour. This has worked exceptionally well for
the design and engineering of control systems, but starts to shoot the AI programme
in the foot by not allowing it to come closer to the very source of intelligence – open-
ness, interactivity and participatory sense-making.

The open-ended decentralized computing model proposes a path for conceiving,
designing, simulating and engineering open systems by emphasizing the process of
self-organization in the open-ended space of possibilities, rather than explicitly and
fully defining its goals and constraints. The model is very general: it itself does
not consider any specific constraints, which, obviously, depend on the domain and
the environment to which the system will be exposed. A certain number of initial
constraints is necessary for bootstrapping the development of an open system able
to shape itself further through interaction with its peers. Just as natural organisms
need a DNA code and, to a certain level, a benign initial environment for growth,
the challenge of open system engineering is to devise these initial conditions in or-
der to bootstrap the mechanism of progressive determination and developmental
evolution. Yet, as so much recent research in various fields has demonstrated, com-
munication, interactivity and exposure to uncertainty from the very beginning are
needed for a living cognitive system to integrate into its milieu and become intelli-
gent within it and in relation to it.

I leave with an excerpt from the Diamond Sutra, the sacred text of Mahayana
Buddhism and the world’s earliest complete and dated printed book, carrying the
timeless message about the illusory and yet tangible nature of individual intelli-
gence, existing only within its milieu as a fleeting instance of a process of becoming:

Suppose, Subhuti, there were a man endowed with a body, a huge body, so that he
had a personal existence like Sumeru, king of mountains. Would that, Subhuti, be a
huge personal existence? Subhuti replied: Yes, huge, O Lord [Buddha], huge, O Well-
Gone, would his personal existence be. And why so? ’Personal existence, personal
existence’, as no-existence has that been taught by the Tathagata; for not, O Lord, is
that existence or non-existence. Therefore is it called ’personal existence’.

(Diamond Sutra, translated from Sanskrit by Edward Conze).

191

Bibliography

Abdul-Rahman, Alfarez and Stephen Hailes (1997). “A Distributed Trust Model”. In:
Proceedings of the 1997 Workshop on New Security Paradigms. NSPW ’97. Langdale,
Cumbria, United Kingdom: ACM, pp. 48–60. ISBN: 0-89791-986-6 (cit. on p. 160).

Abraham, Ajith, Ramos Vitorino, and Crina Grosnan (2006). Stigmergic Optimization.
1st ed. Studies in Computational Intelligence 31. Springer-Verlag Berlin Heidel-
berg. ISBN: 978-3-540-34689-0 3-540-34689-9 (cit. on pp. 44, 112).

Agha, Gul and Nadeem Jamali (1999). “Concurrent Programming for Distributed
Artificial Intelligence”. In: Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Ed. by Gerhard Weiss. MIT Press, pp. 505–534 (cit. on pp. 118–
120, 123, 124, 126).

Agha, Gul A. (Dec. 1986). Actors: A Model of Concurrent Computation in Distributed
Systems. en. Mit Press. ISBN: 978-0-262-51141-4 (cit. on pp. 101, 118, 121).

Ahmed, E., A. S. Elgazzar, and A. S. Hegazi (June 2005). “An Overview of Complex
Adaptive Systems”. In: eprint arXiv:nlin/0506059 (cit. on p. 34).

Albert, Jeong, and Barabasi (July 2000). “Error and attack tolerance of complex net-
works”. In: Nature 406.6794, pp. 378–382. ISSN: 1476-4687 (cit. on pp. 136, 137).

Allamanis, Miltiadis, Marc Brockschmidt, and Mahmoud Khademi (2018). “Learn-
ing to Represent Programs with Graphs”. In: International Conference on Learning
Representations (cit. on p. 97).

Anadiotis, George (Jan. 2018). From graph to the world: pioneering a database virtual
machine. English (cit. on p. 129).

Antonopoulos, Andreas M. (2015). Consensus Algorithms, Blockchain Technology and
Bitcoin. English. Lecture. University College London (cit. on p. 104).

Ashton, Kevin and others (2009). “That ‘internet of things’ thing”. In: RFID journal
22.7, pp. 97–114 (cit. on p. 178).

Assunção, Marcos Dias de, Alexandre da Silva Veith, and Rajkumar Buyya (2018).
“Distributed data stream processing and edge computing: A survey on resource
elasticity and future directions”. In: Journal of Network and Computer Applications
103, pp. 1–17. ISSN: 1084-8045 (cit. on p. 132).

Barabasi, Albert-Laszlo (2013). Network Science Book (cit. on pp. 36, 136).
Barabasi, Albert-Laszlo and Jennifer Frangos (2002). Linked: The New Science of Net-

works. 1st. Perseus Books Group. ISBN: 0-7382-0667-9 978-0-7382-0667-7 (cit. on
pp. 37, 136).

Baran, P. (1962). On Distributed Communications Networks. English. Technical report
P-2626. Santa Monica: RAND Corporation (cit. on p. 95).

— (1964). On Distributed Communications: I. Introduction to distributed communications
networks. English. Memorandum RM-3420-PR. Santa Monica: RAND Corpora-
tion (cit. on p. 95).

192 Bibliography

Barandiaran, Xabier (2003). “Complexity and evolutionary simulation models in
cognitive science Epistemology of synthetic bottom-up simulation modelling”.
In: (cit. on p. 113).

Baronchelli, Andrea et al. (Apr. 2013). Networks in Cognitive Science. arXiv e-print
1304.6736. Trends in Cognitive Science 17(7), 348-360 (2013) (cit. on p. 45).

Barrasa, Jesús (Oct. 2016). RDF Triple Stores vs. Labeled Property Graphs: What’s the
Difference? (Cit. on p. 127).

Barthélémy, Jean-Hugues (Nov. 2015). Life and Technology: An Inquiry Into and Beyond
Simondon. English. Trans. by Barnaby Norman. Lüneburg: meson press eG. ISBN:
978-3-95796-070-2 (cit. on pp. 34, 189).

Battaglia, P. W. et al. (June 2018). “Relational inductive biases, deep learning, and
graph networks”. In: ArXiv e-prints (cit. on p. 8).

Bennett, Charles H (1995). “Logical depth and physical complexity”. In: The Univer-
sal Turing Machine A Half-Century Survey, pp. 207–235 (cit. on p. 29).

Berger, Toby (1971). “Rate distortion theory: A mathematical basis for data compres-
sion”. In: (cit. on p. 46).

Berners-Lee, Tim (2007). “Giant global graph”. In: Decentralized Information Group,
p. 29 (cit. on p. 127).

Berners-Lee, Tim, Roy Fielding, and Larry Masinter (Jan. 2005). Uniform Resource
Identifier (URI): Generic Syntax. Internet standard STD 66 / RFC 3986. Internet
Engineering Task Force (cit. on p. 124).

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). “The semantic web”. In:
Scientific american 284.5, pp. 34–43 (cit. on p. 127).

Berners-Lee, Timothy J (1989). Information management: A proposal. Tech. rep. (cit. on
p. 183).

Bertalanffy, Ludwig Von (1968). General System Theory. Braziller. ISBN: 978-0-8076-
0453-3 (cit. on p. 176).

Blockeel, Hendrik, Tijn Witsenburg, and Joost Kok (2007). “Graphs, hypergraphs and
inductive logic programming”. In: Proceedings of the 5th International Workshop on
Mining and Learning with Graphs, pp. 93–96 (cit. on p. 153).

Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz (1999). Swarm Intelligence: From
Natural to Artificial Systems. 1st ed. Santa Fe Institute Studies on the Sciences of
Complexity. Oxford University Press, USA. ISBN: 978-0-19-513158-1 0-19-513158-
4 (cit. on p. 112).

Bostrom, Nick (June 2012). “The Superintelligent Will: Motivation and Instrumen-
tal Rationality in Advanced Artificial Agents”. en. In: Minds and Machines 22.2,
pp. 71–85. ISSN: 0924-6495, 1572-8641 (cit. on p. 4).

Bostrom, Nick and Napoleon Ryan (May 2015). Superintelligence: Paths, Dangers, Strate-
gies. English. MP3 Una edition. Audible Studios on Brilliance Audio. ISBN: 978-
1-5012-2774-5 (cit. on p. 58).

Brender, Noah Moss (2013). “Sense-Making and Symmetry-Breaking: Merleau-Ponty,
Cognitive Science, and Dynamic Systems Theory”. In: Symposium: Canadian Jour-
nal of Continental Philosophy/Revue canadienne de philosophie continentale 17.2, pp. 247–
273 (cit. on pp. 35, 51).

Busseniers, Evo (Mar. 2018). “Self-organization versus hierarchical organization: a
mathematical investigation of the anarchist philosophy of social organization”.
English. PhD Thesis. Brussels: Vrije Universiteit Brussel (cit. on p. 43).

Buterin, Vitalik (Feb. 2017). The Meaning of Decentralization (cit. on pp. 95, 97).
Callsen, Christian J. and Gul Agha (1994). “Open Heterogeneous Computing in Ac-

tor Space”. In: J. Parallel Distrib. Comput 21.3, pp. 289–300 (cit. on p. 119).

Bibliography 193

Campbell, Donald (1974). “Evolutionary Epistemology”. English. In: The Philosophy
of Karl Popper, Part 1. Ed. by Paul Arthur Schilpp. La Salle, Ill: Open Court Pub-
lishing Co ,U.S., pp. 413–459. ISBN: 978-0-87548-141-8 (cit. on pp. 13, 21).

— (1997). “From Evolutionary Epistemology Via Selection Theory to a Sociology of
Scientific Validity”. In: Evolution and Cognition 3.1-2. Ed. by Cecilia Heyes and
Barbara Frankel (cit. on pp. 13, 21, 32).

Campbell, Joseph (1958). The Symbol Without Meaning. en. Google-Books-ID: AXTzMgEA-
CAAJ. Rhein-Verlag (cit. on p. 85).

Carhart-Harris, Robin Lester et al. (2014). “The entropic brain: a theory of conscious
states informed by neuroimaging research with psychedelic drugs”. In: Frontiers
in Human Neuroscience 8, p. 20 (cit. on pp. 79, 81).

Carnap, Rudolf (1955). “Statistical and Inductive Probability”. In: (cit. on p. 86).
Cath, Corinne (2018). “Governing artificial intelligence: ethical, legal and technical

opportunities and challenges”. In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 376.2133, p. 20180080 (cit. on
p. 172).

Chabot, Pascal, Aliza Krefetz, and Graeme Kirkpatrick (2013). The Philosophy of Si-
mondon: Between technology and individuation. 0th ed. Bloomsbury Academic. ISBN:
1-78093-032-1 978-1-78093-032-9 (cit. on pp. 59, 62).

Chan, Serena (2001). “Complex adaptive systems”. In: ESD. 83 Research Seminar in
Engineering Systems (cit. on p. 34).

Chomsky, Noam (1969). Aspects of the Theory of Syntax. ISBN: 0-262-53007-4 978-0-262-
53007-1 (cit. on p. 8).

Church, Alonzo (1936a). “A note on the Entscheidungsproblem”. In: The journal of
symbolic logic 1.1, pp. 40–41 (cit. on p. 88).

— (1936b). “An unsolvable problem of elementary number theory”. In: American
journal of mathematics 58.2, pp. 345–363 (cit. on pp. 88, 91).

Clark, Andy (2012). “Whatever next? Predictive brains, situated agents, and the fu-
ture of cognitive science”. In: Behav. Brain Sci (cit. on p. 51).

Clark, Andy and David J. Chalmers (1998). “The Extended Mind”. In: Analysis 58.1,
pp. 7–19 (cit. on p. 33).

Clinger, William D (1981). Foundations of Actor Semantics. English. Technical report.
MIT Artificial Intelligence Laboratory (cit. on pp. 118, 119).

Colorni, Alberto, Marco Dorigo, and Vittorio Maniezzo (1991). “Distributed opti-
mization by ant colonies”. In: Proceedings of ECAL91. Paris: Elsevier Publishing,
pp. 134–142 (cit. on p. 112).

Combes, Muriel (2013). Gilbert Simondon and the Philosophy of the Transindividual. en.
MIT Press. ISBN: 978-0-262-01818-0 (cit. on p. 61).

Cooper, Joel (Mar. 2007). Cognitive Dissonance: 50 Years of a Classic Theory. en. SAGE.
ISBN: 978-1-84920-344-9 (cit. on p. 79).

Copeland, B Jack and Diane Proudfoot (1999). “Alan Turing’s forgotten ideas in com-
puter science”. In: Scientific American 280.4, pp. 98–103 (cit. on p. 88).

Courtois, P. J. and Robert L. Ashenhurst (1977). Decomposability. Queueing and Com-
puter System Applications. First Edition. ACM monograph series. Elsevier Inc,
Academic Press Inc. ISBN: 978-0-12-193750-8 0-12-193750-X (cit. on p. 18).

Crumley, Carole L. (1995). “Heterarchy and the Analysis of Complex Societies”. en.
In: Archeological Papers of the American Anthropological Association 6.1, pp. 1–5.
ISSN: 1551-8248 (cit. on p. 27).

Cushing, R. S. (2015). Data-centric computing on distributed resources. ISBN: 978-94-
6259-853-9 (cit. on p. 156).

194 Bibliography

Cushing, Reginald et al. (2015). “Towards a data processing plane: An automata-
based distributed dynamic data processing model”. In: Future Generation Com-
puter Systems. ISSN: 0167-739X (cit. on p. 156).

Cyganiak, Richard et al. (Feb. 2014). RDF 1.1 Concepts and Abstract Syntax. Recom-
mendation. W3C (cit. on p. 127).

daCosta, Francis (Dec. 2013). Rethinking the Internet of Things: A Scalable Approach to
Connecting Everything. English. 1 edition. Apress (cit. on pp. 178, 179).

Damasio, Antonio (Sept. 2008). Descartes’ Error: Emotion, Reason and the Human Brain.
en. Random House. ISBN: 978-1-4070-7206-7 (cit. on pp. 79, 80).

Dao, Ngoc Ha (2011). “Essays in search and matching theory”. PhD Thesis. Univer-
sité du Québec à Montréal (cit. on p. 146).

Davis, Martin (2004). “The Myth of Hypercomputation”. In: Alan Turing: Life and
Legacy of a Great Thinker. Ed. by Christof Teuscher. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 195–211. ISBN: 978-3-662-05642-4 (cit. on p. 94).

De Jaegher, Hanne and Ezequiel Di Paolo (2007). “Participatory sense-making”. In:
Phenomenology and the cognitive sciences 6.4, pp. 485–507 (cit. on pp. 50, 51).

Dean, Jeffrey and Sanjay Ghemawat (2004). “MapReduce: Simplified Data Process-
ing on Large Clusters”. In: OSDI’04: Sixth Symposium on Operating System Design
and Implementation. San Francisco, CA, pp. 137–150 (cit. on p. 105).

DeLanda, Manuel (Sept. 2006). A New Philosophy of Society: Assemblage Theory and
Social Complexity. en. London & New York: A&C Black. ISBN: 978-1-4411-1448-8
(cit. on pp. 61–63).

Deleuze, Gilles and Félix Guattari (1983). Anti-Oedipus: Capitalism and Schizophrenia.
Univ Of Minnesota Press. ISBN: 0-8166-1225-0 978-0-8166-1225-3 (cit. on p. 63).

— (1987). A Thousand Plateaus: Capitalism and Schizophrenia. en. Minneapolis: Uni-
versity of Minnesota Press. ISBN: 978-0-8166-1402-8 (cit. on pp. 61, 63).

Di Paolo, Ezequiel A. Di, Marieke Rohde, and Hanneke De Jaegher (2008). “Hori-
zons for the enactive mind: Values, social interaction, and play”. en. In: Enaction:
Toward a New Paradigm for Cognitive Science. Ed. by John Robert Stewart, Olivier
Gapenne, and Ezequiel A. Di Di Paolo. MIT Press. ISBN: 978-0-262-01460-1 (cit.
on pp. 36, 113).

Di Paolo, Ezequiel Alejandro and Hanne De Jaegher (2012). “The interactive brain
hypothesis”. In: Frontiers in Human Neuroscience 6, p. 163 (cit. on pp. 33, 50, 52).

Dilts, Robert B. and Judith A. Delozier (July 2000). The Encyclopedia of Systemic NLP
and NLP New Coding. en. Vol. 2. N L P University Press. ISBN: 978-0-9701540-0-2
(cit. on p. 21).

Dina Goldin Scott A. Smolka, Peter Wegner (2006). Interactive Computation: The New
Paradigm. 1st ed. Springer. ISBN: 978-3-540-34666-1 3-540-34666-X (cit. on p. 93).

Dittrich, P., J. Ziegler, and W. Banzhaf (2001). “Artificial Chemistries - A Review”. In:
Artificial life 7.3, pp. 225–275 (cit. on p. 152).

Dorigo, Marco and Thomas Stützle (2004). Ant colony optimization. Bradford Books.
MIT Press. ISBN: 978-0-262-04219-2 0-262-04219-3 (cit. on p. 112).

Easley, David and Jon Kleinberg (2010). Networks, Crowds, and Markets: Reasoning
About a Highly Connected World. New York, NY, USA: Cambridge University Press.
ISBN: 0-521-19533-0 978-0-521-19533-1 (cit. on pp. 127, 137, 146).

Eberbach, Eugene (2000). “Expressiveness of $-Calculus: What Matters?” In: Intelli-
gent Information Systems. Heidelberg: Physica-Verlag HD, pp. 145–157. ISBN: 978-
3-7908-1846-8 (cit. on p. 94).

Eberbach, Eugene, Dina Goldin, and Peter Wegner (2004). “Turing’s Ideas and Mod-
els of Computation”. In: Alan Turing: Life and Legacy of a Great Thinker. Ed. by

Bibliography 195

Christof Teuscher. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 159–194.
ISBN: 978-3-662-05642-4 (cit. on pp. 88, 90, 91).

Edelman, Gerald M. (1987). Neural Darwinism: the theory of neuronal group selection.
en. New York: Basic Books. ISBN: 978-0-465-04934-9 (cit. on p. 77).

Edelman, Gerald M. and Joseph A. Gally (Aug. 2013). “Reentry: a key mechanism
for integration of brain function”. In: Frontiers in Integrative Neuroscience 7. ISSN:
1662-5145 (cit. on p. 77).

Edelman, Gerald M and Vernon B Mountcastle (1982). The mindful brain: cortical or-
ganization and the group-selective theory of higher brain function. English. Neuro-
sciences Research Program. Cambridge: MIT Press. ISBN: 0-262-55007-5 978-0-
262-55007-9 0-262-05020-X 978-0-262-05020-3 (cit. on p. 51).

Edelman, Gerald M. and Giulio Tononi (2000). A Universe of Consciousness: How Mat-
ter Becomes Imagination. en. Basic Books. ISBN: 0-465-01377-5 (cit. on pp. 20, 66, 76,
79).

Eldredge, Niles (Sept. 2016). “The Checkered Career of Hierarchical Thinking in Evo-
lutionary Biology”. English. In: Evolutionary Theory: A Hierarchical Perspective. Ed.
by Niles Eldredge et al. Reprint edition. Chicago: University Of Chicago Press,
pp. 1–17. ISBN: 978-0-226-42622-8 (cit. on p. 12).

Emde Boas, Peter van (2012). “Turing Machines for Dummies: Why Representations
Do Matter”. In: Proceedings of the 38th International Conference on Current Trends in
Theory and Practice of Computer Science. SOFSEM’12. Berlin, Heidelberg: Springer-
Verlag, pp. 14–30. ISBN: 978-3-642-27659-0 (cit. on p. 97).

Erb, Benjamin (Apr. 2012). “Concurrent Programming for Scalable Web Architec-
tures”. Diploma Thesis. Institute of Distributed Systems, Ulm University (cit. on
p. 120).

Erdös, P. and A. Rényi (1959). “On Random Graphs I”. In: Publicationes Mathematicae
Debrecen 6, p. 290 (cit. on p. 164).

European Parliament (Feb. 2017). Resolution with recommendations to the Commission
on Civil Law Rules on Robotics (2015/2103(INL)). English (cit. on p. 172).

Firn, Richard (2004). “Plant Intelligence: an Alternative Point of View”. In: Annals of
Botany 93.4, pp. 345–351 (cit. on p. 72).

Flynn, Bernard (2011). “Maurice Merleau-Ponty”. In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta. Fall 2011 (cit. on p. 65).

Fox, Dieter et al. (2001). “Particle filters for mobile robot localization”. In: Sequential
Monte Carlo methods in practice. Springer, pp. 401–428 (cit. on p. 14).

Gell-Mann, Murray (1994). “Complex adaptive systems”. In: Complexity: Metaphors,
models and reality, pp. 17–45 (cit. on p. 34).

Gershenson, Carlos (June 2010). “Computing Networks: A General Framework to
Contrast Neural and Swarm Cognitions”. In: Paladyn 1.2. arXiv: 1001.5244, pp. 147–
153. ISSN: 2080-9778, 2081-4836 (cit. on p. 110).

— (2011). “Self-Organization Leads to Supraoptimal Performance in Public Trans-
portation Systems”. In: PLOS ONE 6.6, pp. 1–6 (cit. on p. 174).

Gigerenzer, Gerd (Jan. 2008). “Why Heuristics Work”. en. In: Perspectives on Psycho-
logical Science 3.1, pp. 20–29. ISSN: 1745-6916 (cit. on p. 46).

Gloag, Erin S., Lynne Turnbull, and Cynthia B. Whitchurch (Jan. 2015). “Bacterial
Stigmergy: An Organising Principle of Multicellular Collective Behaviours of
Bacteria”. en. In: Scientifica 2015, e387342 (cit. on p. 44).

Gode, Dhananjay K and Shyam Sunder (1993). “Allocative efficiency of markets with
zero-intelligence traders: Market as a partial substitute for individual rational-
ity”. In: Journal of political economy 101.1, pp. 119–137 (cit. on p. 145).

196 Bibliography

Goertzel, B. (Mar. 2017a). “Toward a Formal Model of Cognitive Synergy”. In: ArXiv
e-prints (cit. on p. 153).

Goertzel, Ben (2002). Creating Internet Intelligence: Wild Computing, Distributed Digital
Consciousness, and the Emerging Global Brain. en. Google-Books-ID: w5nbBwAAQBAJ.
Springer Science & Business Media. ISBN: 978-1-4615-0561-7 (cit. on p. 9).

— (2009). “Toward a Formal Characterization of Real-World General Intelligence”.
In: Proceedings of the 3rd Conference on Artificial General Intelligence. AGI, pp. 19–24
(cit. on p. 8).

— (2014). “Characterizing Human-Like Consciousness: An Integrative Approach”.
English. In: Procedia Computer Science 41, pp. 152–157 (cit. on p. 172).

— (May 2015a). “Beyond Money: Offer Networks, a Potential Infrastructure for a
Post-Money Economy”. English. In: The End of the Beginning: Life, Society and
Economy on the Brink of the Singularity. Ed. by Ben Goertzel and Ted Goertzel.
1 edition. Humanity+ Press, pp. 522–554. ISBN: 978-0-692-45766-5 (cit. on pp. 145,
147, 153).

— (2015b). “Matching Algorithm For Attention Offer Networks”. English. v3 (cit.
on p. 152).

Goertzel, Ben, Cassio Pennachin, and Neil Geisweiller (Feb. 2014). I. Engineering Gen-
eral Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive
Synergy. English. 2014 edition. New York: Atlantis Press. ISBN: 978-94-6239-026-3
(cit. on pp. 7, 8, 97).

Goertzel, Zar (Aug. 2017b). “Offer Networks Simulation and Dynamics”. English.
MA thesis. Copenhagen (cit. on pp. 152, 155).

Goldin, Dina and Peter Wegner (2002). “Paraconsistency of Inetractive Computa-
tion”. English. In: Proceedings of the International Workshop on Paraconsistent Com-
putational Logic. Ed. by Henrik Decker, Jørgen Villadsen, and Toshiharu Waragai.
Datalogiske tidsskrifter, Roskilde University, Denmark (cit. on p. 94).

— (2006). “Principles of Interactive Computation”. In: Interactive Computation: The
New Paradigm. Ed. by Dina Goldin, Scott A. Smolka, and Peter Wegner. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 25–37. ISBN: 978-3-540-34874-0 (cit.
on pp. 91, 94).

Gontier, Nathalie (2006). “Evolutionary Epistemology”. In: Internet Encyclopedia of
Philosophy (cit. on pp. 13, 33).

Gonzalez, Joseph E et al. (2012). “PowerGraph: distributed graph-parallel computa-
tion on natural graphs”. In: Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation. USENIX Association, pp. 17–30 (cit. on p. 105).

Gouws, Stephen, G-J van Rooyen, and Herman A. Engelbrecht (Oct. 2010). “Measur-
ing Conceptual Similarity by Spreading Activation over Wikipedia’s Hyperlink
Structure”. In: Proceedings of the {2nd} Workshop on {The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources}. Beijing, China: Coling 2010 Orga-
nizing Committee, pp. 46–54 (cit. on p. 45).

Granovetter, Mark (1985). “Economic action and social structure: The problem of
embeddedness”. In: American journal of sociology 91.3, pp. 481–510 (cit. on p. 146).

Grassé, Pierre-Paul (Mar. 1959). “La reconstruction du nid et les coordinations in-
terindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la
stigmergie: Essai d’interprétation du comportement des termites constructeurs”.
In: Insectes Sociaux 6.1, pp. 41–80. ISSN: 0020-1812 (cit. on p. 43).

Greif, Irene (1975). “Semantics of communicating parallel processes”. PhD Thesis.
Massachusetts Institute of Technology, Cambridge, MA, USA (cit. on pp. 118,
121).

Bibliography 197

Griffiths, Paul E and James Tabery (2013). “Developmental systems theory: What
does it explain, and how does it explain it”. In: Adv Child Dev Behav 44, pp. 65–94
(cit. on pp. 33, 34).

Growney, JoAnne Simpson (1982). “Planning for Interruptions”. In: Mathematics Mag-
azine 55.4, pp. 213–219 (cit. on p. 17).

Grünwald, Peter and Paul Vitányi (2010). “Shannon Information and Kolmogorov
Complexity”. In: (cit. on p. 29).

Gödel, Kurt (1931). “Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I”. Trans. by B Meltzer. In: Monatshefte für Mathematik
und Physik 38.1, pp. 173–198 (cit. on pp. 88, 91, 94).

Haber, Stuart and W. Scott Stornetta (Jan. 1991). “How to time-stamp a digital docu-
ment”. In: Journal of Cryptology 3.2, pp. 99–111. ISSN: 1432-1378 (cit. on p. 96).

Hadaller, David, Kevin Regan, and Tyrel Russell (2005). Necessity of supernodes survey.
Tech. rep. Technical report, Technical Report 2005-1, Department of Computer
Science . . . (cit. on p. 137).

Hall, Brian K. (1999). “Evolution as the Control of Development by Ecology”. en. In:
Evolutionary Developmental Biology. Springer, Dordrecht, pp. 297–306. ISBN: 978-
0-412-78590-0 978-94-011-3961-8 (cit. on p. 31).

Hansson, Sven Ove and Till Grüne-Yanoff (2018). “Preferences”. In: The Stanford En-
cyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2018. Metaphysics Re-
search Lab, Stanford University (cit. on p. 152).

Harmon-Jones, Eddie (2012). “Cognitive Dissonance Theory”. In: Encyclopedia of Mind.
Ed. by Harold Pashler et al. Thousand Oaks, CA: Sage Publications (cit. on pp. 79,
80).

Harnad, Stevan (June 1990). “The symbol grounding problem”. In: Physica D: Non-
linear Phenomena 42.1–3, pp. 335–346. ISSN: 0167-2789 (cit. on p. 84).

Harris, Steve, Andy Seaborne, and Eric Prud’hommeaux (Mar. 2013). SPARQL 1.1
Query Language. Recommendation. W3C (cit. on p. 127).

Harrison, Karey (2013). “Building resilient communities”. In: M/C Journal 16.5 (cit.
on p. 67).

Hawkins, Jeff and Sandra Blakeslee (July 2005). On Intelligence. English. New York:
St. Martin’s Griffin. ISBN: 0-8050-7853-3 (cit. on pp. 24, 43).

Heckel, Reiko, Alexander Kurz, and Edmund Chattoe-Brown (2017). “Features of
Agent-based Models”. In: arXiv preprint arXiv:1712.09496 (cit. on p. 37).

Herder, C. et al. (Aug. 2014). “Physical Unclonable Functions and Applications: A
Tutorial”. In: Proceedings of the IEEE 102.8, pp. 1126–1141. ISSN: 0018-9219 (cit. on
p. 178).

Hewitt, C. (Aug. 2010). “Actor Model of Computation: Scalable Robust Information
Systems”. In: ArXiv e-prints (cit. on pp. 120, 122).

— (2013). “What is Computation? Actor Model vs Turing’s Model”. en. In: A Com-
putable Universe: Understanding and Exploring Nature as Computation. Ed. by Hec-
tor Zenil and Roger Penrose. World Scientific, pp. 159–187. ISBN: 978-981-4374-
29-3 (cit. on pp. 120, 121).

Hewitt, Carl (Dec. 1976). “Viewing Control Structures as Patterns of Passing Mes-
sages”. en_US. In: (cit. on pp. 101, 118, 121).

— (2006). “What Is Commitment? Physical, Organizational, and Social”. In: Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems II - AAMAS 2006
and ECAI 2006 International Workshops, COIN 2006 Hakodate, Japan, May 9, 2006
Riva del Garda, Italy, August 28, 2006. Revised Selected Papers, pp. 293–307 (cit. on
pp. 122, 183).

198 Bibliography

Hewitt, Carl (Mar. 2017). “Actor Model of Computation for Scalable Robust Informa-
tion Systems”. In: Symposium on Logic and Collaboration for Intelligent Applications,
Stanford, United States (cit. on p. 120).

Hewitt, Carl, Peter Bishop, and Richard Steiger (1973). “A Universal Modular AC-
TOR Formalism for Artificial Intelligence”. In: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. IJCAI’73. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., pp. 235–245 (cit. on pp. 94, 118, 121).

Hewitt, Carl and Carl Manning (1996). “Participatory Semantics for Multi-Agent
Systems”. English. In: Proceedings of the second international conference on multia-
gent systems. Kyoto: AAAI Press, pp. 441–442. ISBN: ISBN 978-1-57735-013-2 (cit.
on p. 121).

Heyes, Cecilia M. and David L. Hull (Aug. 2001). Selection Theory and Social Construct:
The Evolutionary Naturalistic Epistemology of Donald T. Campbell. en. SUNY Press.
ISBN: 978-0-7914-9017-4 (cit. on p. 13).

Heylighen, F. (2008). “Accelerating socio-technological evolution: from ephemeral-
ization and stigmergy to the global brain”. In: Globalization as evolutionary process:
modeling global change. Vol. 10, p. 284 (cit. on p. 45).

Heylighen, Francis (1995). “(Meta)Systems as Constraints on Variation— a Classifi-
cation and Natural History of Metasystem Transitions”. In: World Futures 45.1,
pp. 59–85 (cit. on pp. 13, 16).

— (July 2001a). “Bootstrapping knowledge representations: From entailment meshes
via semantic nets to learning webs”. In: Kybernetes 30.5/6, pp. 691–725. ISSN:
0368-492X (cit. on p. 45).

— (2001b). The science of self-organization and adaptivity. Ed. by L. D. Kiel. Oxford (cit.
on p. 35).

— (2002a). “The global brain as a new utopia”. In: Zukunftsfiguren, Suhrkamp, Frankurt
(cit. on pp. 27, 42, 45).

— (2002b). “The Global Superorganism: an evolutionary-cybernetic model of the
emerging network society”. In: Journal of Social and Evolutionary Systems (cit. on
p. 8).

— (2009a). Complexity and Self-organization. Ed. by M.J. Bates and M.N. Maack (cit.
on pp. 35, 36).

— (2009b). “Coognitive Systems: A Cybernetic Perspective On The New Science Of
Mind”. Brussels (cit. on p. 45).

— (2011). “Self-organization of complex, intelligent systems: an action ontology for
transdisciplinary integration”. In: Integral Review (cit. on pp. 24, 44, 151).

— (Jan. 2013). “Self-organization in Communicating Groups: The Emergence of Co-
ordination, Shared References and Collective Intelligence”. en. In: Complexity Per-
spectives on Language, Communication and Society. Ed. by Àngels Massip-Bonet and
Albert Bastardas-Boada. Understanding Complex Systems. Springer Berlin Hei-
delberg, pp. 117–149. ISBN: 978-3-642-32816-9 978-3-642-32817-6 (cit. on pp. 77,
99, 151).

— (2015a). “Complexity and Evolution: fundamental concepts of a new scientific
worldview”. Brussels (cit. on p. 66).

— (2015b). “Stigmergy as a Universal Coordination Mechanism: components, vari-
eties and applications”. In: To appear in: Human Stigmergy: Theoretical Developments
and New Applications. Springer. (Cit. on pp. 43, 44).

— (June 2016). “Stigmergy as a universal coordination mechanism I: Definition and
components”. In: Cognitive Systems Research. Special Issue of Cognitive Systems
Research – Human-Human Stigmergy 38, pp. 4–13. ISSN: 1389-0417 (cit. on pp. 43,
44, 70).

Bibliography 199

— (Jan. 2017). “The offer network protocol: Mathematical foundations and a roadmap
for the development of a global brain”. In: The European Physical Journal Special
Topics 226.2, pp. 283–312. ISSN: 1951-6401 (cit. on pp. 145, 152).

Heylighen, Francis and Johan Bollen (1996). “The World-Wide Web as a Super-Brain:
from metaphor to model”. In: Cybernetics and Systems ’96. R. Trappl (Ed.). Austrian
Society For Cybernetics. Press, pp. 917–922 (cit. on p. 45).

Heylighen, Francis and Nathalie Gontier (2019). “Transcending the Rational Symbol
System: how information and communication technology integrates science, art,
philosophy and spirituality into a global brain”. In: Handbook of Human Symbolic
Evolution. Forthcoming. Oxford University Press (cit. on p. 85).

Heylighen, Francis and Cliff Joslyn (1995). “Towards a theory of Metasystem transi-
tions: Introduction to the special issue”. In: World Futures 45.1-4, pp. 1–4 (cit. on
p. 22).

Hoare, C. A. R. (Aug. 1978). “Communicating Sequential Processes”. In: Commun.
ACM 21.8, pp. 666–677. ISSN: 0001-0782 (cit. on p. 94).

Houck, Christopher R. and Gul Agha (1992). “HAL: A High-Level Actor Language
and Its Distributed Implementation”. In: Proceedings of the 1992 International Con-
ference on Parallel Processing, University of Michigan, An Arbor, Michigan, USA, Au-
gust 17-21, 1992. Volume II: Software. Pp. 158–165 (cit. on p. 119).

Humboldt von, Wilhelm Freiherr (1988). On Language: The Diversity of Human Language-
Structure and its Influence on the Mental Development of Mankind. Texts in German
Philosophy. Cambridge University Press. ISBN: 0-521-31513-1 978-0-521-31513-5
(cit. on p. 8).

Hutter, Marcus (Oct. 2012). Universal Artificial Intelligence. Presentation by Marcus
Hutter at Singularity Summit Australia 2012. Singularity Summit Australia 2012
(cit. on p. 9).

— (2013). “To Create a Super-Intelligent Machine, Start with an Equation”. In: The
Conversation November.29, pp. 1–5 (cit. on p. 9).

Immerman, Neil (2016). “Computability and Complexity”. In: The Stanford Encyclo-
pedia of Philosophy. Ed. by Edward N. Zalta. Spring 2016. Metaphysics Research
Lab, Stanford University (cit. on p. 87).

Jackson, William A (2006). “On the social structure of markets”. In: Cambridge Journal
of Economics 31.2, pp. 235–253 (cit. on p. 145).

James, William (1890). The Principles of Psychology. English. Vol. 1. American science
series. New York: Henry Holt and Company (cit. on p. 11).

Johanson, Jan and Lars-Gunnar Mattsson (1994). “The Markets-As-Networks Tradi-
tion in Sweden”. In: Research traditions in marketing. Ed. by Gilles Laurent, Gary
L. Lilien, and Bernard Pras. Dordrecht: Springer Netherlands, pp. 321–346. ISBN:
978-94-011-1402-8 (cit. on p. 146).

Johnson, John and Adrian V Gheorghe (2013). “Antifragility analysis and measure-
ment framework for systems of systems”. In: International Journal of Disaster Risk
Science 4.4, pp. 159–168 (cit. on p. 36).

Jones, Matt et al. (July 2013). “Sequential effects in response time reveal learning
mechanisms and event representations”. eng. In: Psychological Review 120.3, pp. 628–
666. ISSN: 1939-1471 (cit. on pp. 29, 30).

Joseph, Shibily, Jasmin E.A., and Soumya Chandran (2015). “Stream Computing:
Opportunities and Challenges in Smart Grid”. In: Procedia Technology 21, pp. 49–
53. ISSN: 2212-0173 (cit. on p. 132).

Joslyn, Cliff, Francis Heylighen, and Valentin Turchin (1992). “Metasystem Transi-
tion Theory”. In: Principia Cybernetica Web. Ed. by F. Heylighen, Cliff Joslyn, and
Valentin Turchin. Brussels: Principia Cybernetica (cit. on p. 21).

200 Bibliography

Kahrs, Herman (2017). Creating Human Level AI: How and When | Ray Kurzweil (cit.
on pp. 8, 172).

Kalinka, Alex T. and Pavel Tomancak (July 2012). “The evolution of early animal
embryos: conservation or divergence?” eng. In: Trends in Ecology & Evolution 27.7,
pp. 385–393. ISSN: 1872-8383 (cit. on p. 31).

Karnow, Curtis EA (1996). “Liability for distributed artificial intelligences”. In: Berke-
ley Technology Law Journal, pp. 147–204 (cit. on p. 172).

Kegan, Robert (1982). The evolving self: problem and process in human development. En-
glish. Cambridge, Mass.: Harvard University Press. ISBN: 0-674-27230-7 978-0-
674-27230-9 0-674-27231-5 978-0-674-27231-6 (cit. on pp. 49, 80).

Kelly, Kevin (1998). “The Computational Metaphor”. English. In: The Whole Earth
Catalog Winter (cit. on p. 83).

— (2010). What Technology Wants. Viking Adult. ISBN: 978-1-101-44446-7 (cit. on p. 83).
Kivelä, Mikko et al. (2014). “Multilayer networks”. In: Journal of complex networks 2.3,

pp. 203–271 (cit. on p. 37).
Kleedorfer, Florian and Christina Maria Busch (2013). “Beyond Data: Building a Web

of Needs”. In: LDOW (cit. on p. 152).
Klein, G., B. Moon, and R.R. Hoffman (July 2006). “1. Making Sense of Sensemaking

1: Alternative Perspectives”. In: IEEE Intelligent Systems 21.4, pp. 70–73. ISSN:
1541-1672 (cit. on p. 51).

Kleinberg, Jon M et al. (1999). “The web as a graph: measurements, models, and
methods”. In: International Computing and Combinatorics Conference. Springer, pp. 1–
17 (cit. on p. 129).

Kohlberg, Lawrence and Carol Gilligan (1971). “The adolescent as a philosopher:
The discovery of the self in a postconventional world”. In: Daedalus, pp. 1051–
1086 (cit. on pp. 49, 50).

Kolokolova, Antonina (2017). “Complexity Barriers as Independence”. In: The Incom-
putable: Journeys Beyond the Turing Barrier. Ed. by S. Barry Cooper and Mariya I.
Soskova. Cham: Springer International Publishing, pp. 143–168. ISBN: 978-3-319-
43669-2 (cit. on p. 87).

Kolonin, A. et al. (June 2018). “A Reputation System for Artificial Societies”. In:
ArXiv e-prints (cit. on pp. 104, 160).

Komosinski, Maciej and Andrew Adamatzky (June 2009). Artificial Life Models in
Software. en. Springer Science & Business Media. ISBN: 978-1-84882-285-6 (cit. on
p. 36).

Kshemkalyani, Ajay D. and Mukesh Singhal (Apr. 2008). Distributed Computing: Prin-
ciples, Algorithms, and Systems. en. Cambridge University Press. ISBN: 978-1-139-
47031-5 (cit. on p. 136).

Kurzweil, Ray (2005). The Singularity is Near: When Humans Transcend Biology. en.
Viking. ISBN: 978-0-670-03384-3 (cit. on p. 8).

Laland, Kevin, Blake Matthews, and Marcus W. Feldman (2016). “An introduction to
niche construction theory”. In: Evolutionary Ecology 30, pp. 191–202. ISSN: 0269-
7653 (cit. on p. 32).

Lamport, Leslie, Robert Shostak, and Marshall Pease (1982). “The Byzantine generals
problem”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
4.3, pp. 382–401 (cit. on p. 96).

Latour, Bruno (Sept. 2007). Reassembling the Social: An Introduction to Actor-Network-
Theory. en. OUP Oxford. ISBN: 978-0-19-925605-1 (cit. on pp. 61, 172).

Laud, Peeter (2011). Complexity Theory (MTAT.07.004), Lecture 2. Tech. rep. (cit. on
p. 98).

Bibliography 201

Lebel, Catherine et al. (2008). “Microstructural maturation of the human brain from
childhood to adulthood”. In: Neuroimage 40.3, pp. 1044–1055 (cit. on p. 12).

Legg, Shane (2008). “Machine Super Intelligence”. Engels. PhD thesis. University of
Lugano (cit. on p. 9).

Legg, Shane and Marcus Hutter (2007). “A collection of definitions of intelligence”.
In: Advances in artificial general intelligence: Concepts, archtectures and algorithms.
Ed. by Ben Goertzel and Pei Wang. Vol. 157. Frontiers in Artificial Intelligence
and applications. Amsterdam: IOS Press, pp. 17–24 (cit. on p. 7).

Leuteritz, Thomas EJ and Hamid R Ekbia (2008). “Not all roads lead to resilience:
a complex systems approach to the comparative analysis of tortoises in arid
ecosystems”. In: Ecology and Society 13.1, p. 1 (cit. on p. 67).

Levine, Peter (Nov. 2016). Return to the Edge and the End of Cloud Computing. English.
Presentation (cit. on p. 182).

Levy, David, ed. (1988). Computer chess compendium. 1st ed. New York: Springer-
Verlag (cit. on p. 188).

Lewontin, Richard C (1970). “The units of selection”. In: Annual review of ecology and
systematics 1.1, pp. 1–18 (cit. on p. 15).

Li, Hongxia et al. (2016). “Distributed adaptive consensus of heterogeneous multi-
agent systems with unknown coupling weights”. In: IMA Journal of Mathematical
Control and Information 35.1, pp. 93–105 (cit. on p. 112).

Li, Ming and Paul Vitanyi (Feb. 1997). An Introduction to Kolmogorov Complexity and
Its Applications. en. Google-Books-ID: LKEmB_GQ53QC. Springer Science & Busi-
ness Media. ISBN: 978-0-387-94868-3 (cit. on p. 24).

Li, S. et al. (Jan. 2018). “A Fundamental Tradeoff Between Computation and Commu-
nication in Distributed Computing”. In: IEEE Transactions on Information Theory
64.1, pp. 109–128. ISSN: 0018-9448 (cit. on p. 122).

Lloyd, Elisabeth (2012). “Units and Levels of Selection”. In: The Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Winter 2012 (cit. on p. 14).

Love, Dylan (May 2014). “The Specs On This 1970 IBM Mainframe Will Remind You
Just How Far Technology Has Come”. English. In: Business Insider (cit. on p. 182).

M. Collins, Allan and Elizabeth Loftus (1975). “A Spreading Activation Theory of
Semantic Processing”. In: Psychological Review 82, pp. 407–428 (cit. on p. 45).

MacKay, Donald M. (1969). Information, mechanism and meaning. M.I.T. Press. ISBN:
0-262-13055-6 978-0-262-13055-4 0-262-63032-X 978-0-262-63032-0 (cit. on pp. 61–
63, 85, 86).

Madison, Michael et al. (2015). “Nosql database technologies”. In: Journal of Interna-
tional Technology and Information Management 24.1, p. 1 (cit. on p. 127).

MaidSafe (Dec. 2015). Evolving Terminology with Evolved Technology: Decentralized ver-
sus Distributed (cit. on p. 95).

Mandler, Michael (Feb. 2005). “Incomplete preferences and rational intransitivity of
choice”. In: Games and Economic Behavior 50.2, pp. 255–277. ISSN: 0899-8256 (cit.
on pp. 146, 160).

Mansell, Warren and Richard S. Marken (2015). “The origins and future of control
theory in psychology”. In: Review of General Psychology 19.4, pp. 425–430. ISSN:
1939-1552(Electronic),1089-2680(Print) (cit. on pp. 39, 40, 43).

Markley, O. W. and Willis W. Harman, eds. (Sept. 1981). Changing Images of Man.
Pergamon Press. ISBN: 0-08-024313-4 (cit. on pp. 52, 188).

Marsh, Leslie and Christian Onof (2008). “Stigmergic epistemology, stigmergic cog-
nition”. In: Cognitive Systems Research 9.1, pp. 136–149 (cit. on pp. 44, 68, 70, 105).

Matt, Christian (Aug. 2018). “Fog Computing”. In: Business & Information Systems
Engineering 60.4, pp. 351–355. ISSN: 1867-0202 (cit. on p. 129).

202 Bibliography

Maturana, H. R. and Francisco J. Varela (Jan. 1980). Autopoiesis and Cognition: The
Realization of the Living. en. Dordrecht: D. Reidel Publishing Company. ISBN: 978-
90-277-1016-1 (cit. on p. 76).

McCarthy, John et al. (2006). “A proposal for the Dartmouth summer research project
on artificial intelligence, August 31, 1955”. In: AI magazine 27.4, p. 12 (cit. on p. 7).

McClelland, Kent (Dec. 1994). “Perceptual Control and Social Power”. en. In: Socio-
logical Perspectives 37.4, pp. 461–496. ISSN: 0731-1214 (cit. on p. 42).

McClelland, Kent A. (2006). “Understanding Collective Control Processes”. en. In:
Purpose, Meaning, and Action. Palgrave Macmillan, New York, pp. 31–56. ISBN:
978-1-349-73419-1 978-1-137-10809-8 (cit. on p. 43).

McCulloch, Warren S. (June 1945). “A heterarchy of values determined by the topol-
ogy of nervous nets”. en. In: The bulletin of mathematical biophysics 7.2, pp. 89–93.
ISSN: 0007-4985, 1522-9602 (cit. on p. 27).

McCune, Robert Ryan, Tim Weninger, and Greg Madey (Oct. 2015). “Thinking Like
a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale Distributed
Graph Processing”. In: ACM Comput. Surv. 48.2, 25:1–25:39. ISSN: 0360-0300 (cit.
on p. 130).

McGann, Marek (2008). Enactive Cognition: A Cognition Briefing. English (cit. on p. 51).
Mejri, Mohamed Nidhal, Jalel Ben-Othman, and Mohamed Hamdi (2014). “Survey

on VANET security challenges and possible cryptographic solutions”. In: Vehic-
ular Communications 1.2, pp. 53–66. ISSN: 2214-2096 (cit. on p. 176).

Miller, Chris and Chris Vasalek (Aug. 2015). Remote exploitationof an unaltered passen-
ger vehicle. English. Presentation. Las Vegas, NV (cit. on p. 177).

Miller, George A., Eugene Galanter, and Karl H. Pribram (1960). Plans and the struc-
ture of behavior. en. Hole, Rinehart and Winston, Inc. ISBN: 0-03-010075-5 (cit. on
pp. 20, 21, 41).

Milner, Robin (Jan. 1993a). “Elements of Interaction: Turing Award Lecture”. In:
Commun. ACM 36.1, pp. 78–89. ISSN: 0001-0782 (cit. on pp. 91, 93, 94).

— (1993b). “The polyadic -calculus: a tutorial”. In: Logic and algebra of specification.
Springer, pp. 203–246 (cit. on p. 94).

Minati, Gianfranco, Eliano Pessa, and Mario Abram (2009). Processes of Emergence of
Systems and Systemic Properties: Towards a General Theory of Emergence, Proceedings
of the International Conference, Castel Ivano,Italy, 18-20 Ocotber 2007. World Scien-
tific Publishing Company. ISBN: 981-279-346-1 (cit. on p. 27).

Minsky, Marvin (Mar. 1988). Society Of Mind. en. Simon & Schuster. ISBN: 978-0-671-
65713-0 (cit. on p. 9).

Mitchell, Melanie (2006). “Complex systems: Network thinking”. In: Artificial Intelli-
gence 170.18, pp. 1194–1212. ISSN: 0004-3702 (cit. on p. 35).

Molenaar, Peter C. M., Karl M. Newell, and Richard M. Lerner (2013). Handbook of
Developmental Systems Theory and Methodology. 1st ed. The Guilford Press. ISBN:
1-60918-509-9 978-1-60918-509-1 (cit. on p. 34).

Nakamoto, Satoshi (2008). “Bitcoin: A peer-to-peer electronic cash system”. In: Con-
sulted 1.2012, p. 28 (cit. on pp. 96, 104).

Nayebi, Aran (2014). “Practical intractability: A critique of the hypercomputation
movement”. In: Minds and Machines 24.3, pp. 275–305 (cit. on pp. 87–89, 94, 121).

Neumann, John von (June 1945). First Draft of a Report on the EDVAC. English. Tech.
rep. W–670–ORD–4926. Moore School of Electrical Engineering University of
Pennsylvania (cit. on p. 121).

Newell, Allen, J.C. Shaw, and H.A. Simon (Oct. 1958). “Chess-Playing Programs
and the Problem of Complexity”. In: IBM Journal of Research and Development 2.4,
pp. 320–335. ISSN: 0018-8646 (cit. on pp. 188, 189).

Bibliography 203

Nilsson, Nils J. (2005). “Human-Level Artificial Intelligence? Be Serious!” In: AI Mag-
azine 26, pp. 68–75 (cit. on p. 172).

Noorman, Job et al. (July 2017). “Sancus 2.0: A Low-Cost Security Architecture for
IoT Devices”. In: ACM Trans. Priv. Secur. 20.3, 7:1–7:33. ISSN: 2471-2566 (cit. on
pp. 177, 178).

Odling-Smee, F. John (1988). “Niche-constructing phenotypes”. In: The role of behavior
in evolution. Ed. by H.C. Plotkin. Cambridge, MA, US: The MIT Press, pp. 77–132
(cit. on p. 32).

Odling-Smee, F. John, Kevin N. Laland, and Marcus W. Feldman (Feb. 2013). Niche
Construction: The Neglected Process in Evolution (MPB-37). en. Princeton University
Press. ISBN: 1-4008-4726-5 (cit. on pp. 32, 33).

Oizumi, Masafumi, Larissa Albantakis, and Giulio Tononi (2014). “From the Phe-
nomenology to the Mechanisms of Consciousness: Integrated Information The-
ory 3.0”. In: PLOS Computational Biology 10.5, pp. 1–25 (cit. on p. 49).

Oyama, Susan (Mar. 2000). The Ontogeny of Information: Developmental Systems and
Evolution. English. 2 edition. Durham, N.C.: Duke University Press Books. ISBN:
978-0-8223-2466-9 (cit. on pp. 34, 56, 61).

Oyama, Susan, Paul E. Griffiths, and Russell D. Gray, eds. (2001). Cycles of Contin-
gency - Developmental Systems and Evolution. English. MIT Press (cit. on p. 33).

Pagallo, Ugo (2018). “Apples, oranges, robots: four misunderstandings in today’s
debate on the legal status of AI systems”. In: Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 376.2133, p. 20180168
(cit. on p. 172).

Page, Lawrence et al. (1999). The PageRank citation ranking: Bringing order to the web.
Tech. rep. Stanford InfoLab (cit. on p. 134).

Piaget, Jean (Oct. 1971). Genetic Epistemology. English. Trans. by Eleanor Duckworth.
New York: W W Norton & Co Inc. ISBN: 978-0-393-00596-7 (cit. on p. 80).

— (2004). Genetic epistemology. Russian. 5th ed. Saint Petersburg: Piter. ISBN: 5-318-
00032-0 (cit. on pp. 49, 51).

Piccinini, Gualtiero (2011). “The physical Church–Turing thesis: Modest or bold?”
In: The British Journal for the Philosophy of Science 62.4, pp. 733–769 (cit. on pp. 89,
90).

— (2015). “Pancomputationalism”. In: Physical Computation: A Mechanistic Account.
Oxford: Oxford University Press. ISBN: 978-0-19-965885-5 (cit. on p. 87).

— (2017). “Computation in Physical Systems”. In: The Stanford Encyclopedia of Philos-
ophy. Ed. by Edward N. Zalta. Summer 2017. Metaphysics Research Lab, Stanford
University (cit. on p. 89).

Pinker, Steven (May 2010). “The cognitive niche: Coevolution of intelligence, social-
ity, and language”. en. In: Proceedings of the National Academy of Sciences 107.Sup-
plement 2, pp. 8993–8999. ISSN: 0027-8424, 1091-6490 (cit. on p. 33).

Pintea, Camelia-Mihaela (2014). Advances in Bio-inspired Computing for Combinatorial
Optimization Problems. 1st ed. Intelligent Systems Reference Library 57. Springer-
Verlag Berlin Heidelberg. ISBN: 978-3-642-40178-7 978-3-642-40179-4 (cit. on p. 44).

Powers, W. T., R. K. Clark, and R. L. Mc Farland (1960). “A General Feedback Theory
of Human Behavior: Part I”. In: Perceptual and Motor Skills 11.1, pp. 71–88 (cit. on
p. 74).

Powers, W. T., R. K. Clark, and R. L. McFarland (1960). “A General Feedback Theory
of Human Behavior: Part II”. In: Perceptual and Motor Skills 11.3, pp. 309–323 (cit.
on pp. 39, 40, 42, 43).

Powers, William T (1973). Behavior: The control of perception. Aldine Chicago (cit. on
p. 20).

204 Bibliography

Powers, William T. (May 2016). Perceptual Control Theory: An Overview of the Third
Grand Theory in Psychology. English. Ed. by Dag Forssell. 2016 edition. S.l.: Living
Control Systems Publishing. ISBN: 978-1-938090-12-7 (cit. on pp. 39, 41).

Pritchett, Dan (2008). “BASE: An ACID alternative”. In: ACMQueue 6.3, pp. 48–55
(cit. on p. 128).

Prokopenko, Mikhail (2009). “Guided self-organization”. English. In: HFSP Journal
3.5, pp. 287–289. ISSN: 1955-2068 (cit. on p. 45).

— ed. (2014). Guided Self-Organization: Inception. 1st ed. Emergence, Complexity and
Computation 9. Springer. ISBN: 978-3-642-53733-2 978-3-642-53734-9 (cit. on p. 45).

PubNub (June 2017). Moving the Cloud to the Edge. English. Blog (cit. on p. 182).
Raval, Siraj (2016). Decentralized Applications: Harnessing Bitcoin’s Blockchain Technol-

ogy. English. 1st ed. Computers / finance. O’Reilly Media. ISBN: 1-4919-2454-3
978-1-4919-2454-9 (cit. on p. 183).

Raynal, Michel (June 2013). Distributed Algorithms for Message-Passing Systems. en.
Springer Science & Business Media. ISBN: 978-3-642-38123-2 (cit. on pp. 98, 101,
108, 119).

Ren, Wei and Yongcan Cao (2011). Distributed Coordination of Multi-agent Networks:
Emergent Problems, Models, and Issues. Communications and Control Engineering.
Springer (cit. on p. 37).

Robinson, Ian, Jim Weber, and Efil Eifrem (2015). Graph Databases: New Opportunities
For Connected Data. 2nd ed. (cit. on pp. 126, 128, 153).

Rodriguez, Marko (2011). Graphs, Brains, and Gremlin (cit. on p. 45).
— (Oct. 2012). A Solution to the Supernode Problem. English. Blog (cit. on pp. 135, 137).
— (July 2015a). Tales from the TinkerPop. English. Blog (cit. on p. 131).
Rodriguez, Marko A. (Oct. 2008a). “Grammar-based random walkers in semantic

networks”. In: Knowledge-Based Systems 21.7, pp. 727–739. ISSN: 0950-7051 (cit. on
pp. 128, 130, 131, 133).

— (Apr. 2008b). “Mapping Semantic Networks to Undirected Networks”. In: arXiv:0804.0277
[cs]. arXiv: 0804.0277 (cit. on p. 128).

— (2010). “General-Purpose Computing on a Semantic Network Substrate”. In: Emer-
gent Web Intelligence: Advanced Semantic Technologies. Ed. by Youakim Badr et al.
London: Springer London, pp. 57–102. ISBN: 978-1-84996-077-9 (cit. on p. 97).

— (2015b). “The Gremlin Graph Traversal Machine and Language”. In: Proceedings
of the 15th Symposium on Database Programming Languages. DBPL 2015. New York,
NY, USA: ACM, pp. 1–10. ISBN: 978-1-4503-3902-5 (cit. on pp. 129, 130, 135).

— (June 2017). “Open Problems in the Universal Graph Theory”. In: San Francisco,
CA, USA: Zenodo (cit. on p. 126).

Rodriguez, Marko A. and Johan Bollen (May 2007). “Modeling Computations in a
Semantic Network”. In: arXiv:0706.0022 [cs]. arXiv: 0706.0022 (cit. on p. 129).

Rodriguez, Marko A. and Joe Geldart (Oct. 2008). “An Evidential Path Logic for
Multi-Relational Networks”. In: arXiv:0810.1481 [cs]. arXiv: 0810.1481 (cit. on p. 134).

Rodriguez, Marko A. and Peter Neubauer (June 2010). “Constructions from Dots
and Lines”. In: arXiv:1006.2361 [cs]. arXiv: 1006.2361 (cit. on pp. 37, 39).

Rodriguez, Marko A and Peter Neubauer (2011). “A path algebra for multi-relational
graphs”. In: Data Engineering Workshops (ICDEW), 2011 IEEE 27th International
Conference on. IEEE, pp. 128–131 (cit. on pp. 131, 134).

Rodriguez, Marko A., Alberto Pepe, and Joshua Shinavier (June 2010). “The Dilated
Triple”. In: arXiv:1006.1080 [cs]. arXiv: 1006.1080 (cit. on p. 128).

Rodriguez, Marko A. and Joshua Shinavier (Jan. 2010). “Exposing Multi-Relational
Networks to Single-Relational Network Analysis Algorithms”. In: Journal of In-
formetrics 4.1. arXiv: 0806.2274, pp. 29–41. ISSN: 17511577 (cit. on p. 131).

Bibliography 205

Rodriguez Marko, Marko A. (2016a). A Gremlin Implementation of the Gremlin Traversal
Machine (cit. on p. 138).

— (Sept. 2016b). Gremlin’s Time Machine (cit. on pp. 136, 139).
Rodríguez, José María Álvarez, José Emilio Labra Gayo, and Patricia Ordońez De

Pablos (Jan. 2013). “ONTOSPREAD: A Framework for Supporting the Activa-
tion of Concepts in Graph-Based Structures through the Spreading Activation
Technique”. In: Information Systems, E-learning, and Knowledge Management Re-
search. Ed. by Miltiadis D. Lytras et al. Communications in Computer and In-
formation Science 278. Springer Berlin Heidelberg, pp. 454–459. ISBN: 978-3-642-
35878-4 978-3-642-35879-1 (cit. on p. 45).

Ruohonen, Keijo (2013). “Graph Theory”. English. Tampere University of Technol-
ogy, Finland (cit. on p. 38).

Russell, Matthew A. (2019). Mining the social web: data mining Facebook, Twitter, LinkedIn,
Instagram, GitHub, and more. 3rd ed. O’Reilly Media. ISBN: 978-1-4919-8504-5 (cit.
on p. 129).

Sandberg, Oscar (2005). “Searching in a small world”. English. PhD Thesis. Gote-
borg, Sweden: Chalmers University of Technology and Goteborg University (cit.
on p. 136).

Sayama, Hiroki (2014). “Guiding Designs of Self-Organizing Swarms: Interactive
and Automated Approaches”. In: Guided Self-Organization: Inception. Ed. by Mikhail
Prokopenko. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 365–387. ISBN:
978-3-642-53734-9 (cit. on p. 113).

Sayama, Hiroki et al. (2013). “Modeling complex systems with adaptive networks”.
In: Computers & Mathematics with Applications 65.10, pp. 1645–1664. ISSN: 0898-
1221 (cit. on p. 37).

Schacter, Daniel L., Daniel T. Gilbert, and Daniel M. Wegner (Dec. 2010). Psychology.
en. Worth Publishers. ISBN: 978-1-4292-3719-2 (cit. on p. 49).

Schneider, Nathan (Apr. 2014). Code your own utopia: Meet Ethereum, bitcoin’s most
ambitious successor. English (cit. on p. 183).

Scott-Phillips, Thomas C. et al. (May 2014). “The niche construction perspective:
a critical appraisal”. eng. In: Evolution; International Journal of Organic Evolution
68.5, pp. 1231–1243. ISSN: 1558-5646 (cit. on p. 33).

Shadbolt, Nigel, Tim Berners-Lee, and Wendy Hall (2006). “The semantic web revis-
ited”. In: IEEE intelligent systems 21.3, pp. 96–101 (cit. on p. 127).

Shang, Zechao and Jeffrey Xu Yu (Oct. 2014). “Auto-approximation of Graph Com-
puting”. In: Proc. VLDB Endow. 7.14, pp. 1833–1844. ISSN: 2150-8097 (cit. on p. 134).

Shannon, C. E. (July 1948). “A mathematical theory of communication”. In: The Bell
System Technical Journal 27.3, pp. 379–423. ISSN: 0005-8580 (cit. on pp. 60, 61).

Shannon, Claude E (1950). “Programming a computer for playing chess”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41.314,
pp. 256–275 (cit. on p. 188).

Simon, H. A. (1990). “Invariants of human behavior”. eng. In: Annual Review of Psy-
chology 41, pp. 1–19. ISSN: 0066-4308 (cit. on p. 46).

Simon, Herbert A. (1962). “The architecture of complexity”. In: Proceedings of the
American Philosophical Society, pp. 467–482 (cit. on pp. 16–19, 23, 24, 65, 73, 109).

Simon, Herbert Alexander (1982). Models of Bounded Rationality: Empirically grounded
economic reason. en. Google-Books-ID: 9CiwU28z6WQC. MIT Press. ISBN: 978-0-
262-19372-6 (cit. on p. 27).

Simondon, Gilbert (1980). “On the mode of existence of technical objects”. English.
University of Western Ontario (cit. on pp. 59, 172, 173, 175, 176, 185).

206 Bibliography

Simondon, Gilbert (1992). “The Genesis of the Individual”. In: Incorporations. Ed.
by Jonathan Crary and Sanford Kwinter. New York: Zone, pp. 297–319. ISBN:
0942299299 (paper) 0942299302 (cloth) (cit. on pp. 59, 172).

— (Nov. 2005). L’individuation à la lumière des notions de forme et d’information [Individ-
uation in light of the notions of form and information]. Français. Grenoble: Editions
Jérôme Millon. ISBN: 978-2-84137-181-5 (cit. on p. 59).

— (2009). “The Position of the Problem of Ontogenesis”. In: Parrhesia 7, pp. 4–16
(cit. on pp. 34, 59, 73).

Sims, Chris R. (July 2016). “Rate–distortion theory and human perception”. In: Cog-
nition 152.Supplement C, pp. 181–198. ISSN: 0010-0277 (cit. on pp. 29, 47, 48).

Smart, John M. (Nov. 2015). “Humanity Rising: Why Evolutionary Developmental-
ism Will Inherit the Future”. In: World Futures Review 7.2-3, pp. 116–130. ISSN:
1946-7567 (cit. on p. 31).

— (2017). What is Evolutionary Development? English. Alpha version (cit. on p. 31).
Smelser, Neil J and Richard Swedberg (2005). “Introducing economic sociology”. In:

The handbook of economic sociology 2, pp. 3–25 (cit. on p. 146).
Smith, Daniel and John Protevi (2013). “{Gilles} {Deleuze}”. In: The Stanford Encyclo-

pedia of Philosophy. Ed. by Edward N. Zalta. Spring 2013 (cit. on p. 64).
Smith, J. Maynard et al. (1985). “Developmental Constraints and Evolution: A Per-

spective from the Mountain Lake Conference on Development and Evolution”.
In: The Quarterly Review of Biology 60.3, pp. 265–287 (cit. on p. 31).

Solaiman, SM (2017). “Legal personality of robots, corporations, idols and chim-
panzees: a quest for legitimacy”. In: Artificial Intelligence and Law 25.2, pp. 155–
179 (cit. on p. 172).

Solum, Lawrence B (1991). “Legal personhood for artificial intelligences”. In: NCL
Rev. 70, p. 1231 (cit. on p. 172).

Stannett, Mike (2004). “Hypercomputational Models”. In: Alan Turing: Life and Legacy
of a Great Thinker. Ed. by Christof Teuscher. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 135–157. ISBN: 978-3-662-05642-4 (cit. on pp. 87, 88).

Steels, Luc (2008). “The Symbol Grounding Problem has Been Solved. So What’s
Next”. In: Symbols and Embodiment: Debates on Meaning and Cognition. Ed. by
Manuel de Vega, Arthur M. Glenberg, and Arthur C. Graesser. Oxford University
Press, pp. 223–244 (cit. on p. 85).

— (May 2015). The Talking Heads experiment: Origins of words and meanings. en. Google-
Books-ID: jtEsCQAAQBAJ. Language Science Press. ISBN: 978-3-944675-42-8 (cit.
on p. 85).

Stenhouse, David (1974). The evolution of intelligence: A general theory and some of its
implications. Barnes & Noble Books (cit. on p. 72).

Stotz, Karola (Dec. 2010). “Human nature and cognitive–developmental niche con-
struction”. en. In: Phenomenology and the Cognitive Sciences 9.4, pp. 483–501. ISSN:
1568-7759, 1572-8676 (cit. on p. 33).

Stützle, Thomas and Marco Dorigo (1999). “ACO algorithms for the traveling sales-
man problem”. In: Evolutionary algorithms in engineering and computer science, pp. 163–
183 (cit. on pp. 44, 112).

Summers, Frank (1994). Object Relations Theories and Psychopathology: A Comprehensive
Text. en. Analytic Press. ISBN: 978-0-88163-155-5 (cit. on p. 50).

Swan, Melanie (Feb. 2015). Blockchain: Blueprint for a New Economy. English. 1 edition.
O’Reilly Media. ISBN: 978-1-4919-2049-7 (cit. on p. 160).

Taleb, Nassim et al. (2012). A New Heuristic Measure of Fragility and Tail Risks: Appli-
cation to Stress Testing. IMF working paper. International monetary fund (IMF)
(cit. on p. 36).

Bibliography 207

Taleb, Nassim Nicholas (Nov. 2012). Antifragile: Things That Gain from Disorder. Ran-
dom House. ISBN: 1-4000-6782-0 (cit. on p. 36).

Taleb, Nassim Nicholas and Raphael Douady (2013). “Mathematical definition, map-
ping, and detection of (anti) fragility”. In: Quantitative Finance 13.11, pp. 1677–
1689 (cit. on p. 36).

Taylor, M. M. (June 1999). “Editorial: Perceptual Control Theory and its application”.
In: International Journal of Human-Computer Studies 50.6, pp. 433–444. ISSN: 1071-
5819 (cit. on p. 39).

Thagard, Paul (2002). Coherence in Thought and Action. en. MIT Press. ISBN: 978-0-262-
70092-4 (cit. on pp. 48, 76).

Thrun, Sebastian, Dieter Fox, and Wolfram Burgard (2005). Probabilistic Robotics. In-
telligent Robotics and Autonomous Agents. ISBN: 0-262-20162-3 978-0-262-20162-
9 (cit. on p. 14).

Todd, Peter M. and Gerd Gigerenzer (2012). Ecological Rationality: Intelligence in the
World. 1st ed. Evolution and Cognition. Oxford University Press. ISBN: 0-19-
531544-8 978-0-19-531544-8 (cit. on p. 46).

Tomasini, Marcello (2015). “An introduction to multilayer networks”. In: BioComplex
Laboratory, Florida Institute of Technology, Melbourne, USA, pp. 1–14 (cit. on p. 38).

Tononi, Giulio (Nov. 2004). “An information integration theory of consciousness”.
en. In: BMC Neuroscience 5.1, p. 42. ISSN: 1471-2202 (cit. on pp. 20, 49, 66).

— (Dec. 2008). “Consciousness as Integrated Information: a Provisional Manifesto”.
en. In: The Biological Bulletin 215.3, pp. 216–242. ISSN: 0006-3185, 1939-8697 (cit. on
p. 49).

Tononi, Giullo, Olaf Sporns, and Gerald M. Edelman (July 1992). “Reentry and the
Problem of Integrating Multiple Cortical Areas: Simulation of Dynamic Integra-
tion in the Visual System”. en. In: Cerebral Cortex 2.4, pp. 310–335. ISSN: 1047-3211,
1460-2199 (cit. on pp. 76, 77).

Trewavas, Anthony (July 2003). “Aspects of Plant Intelligence”. In: Annals of Botany
92.1, pp. 1–20. ISSN: 0305-7364 (cit. on p. 72).

— (2004). “Aspects of Plant Intelligence: an Answer to Firn”. In: Annals of Botany
93.4, pp. 353–357 (cit. on p. 72).

Tuohy, Shane et al. (2015). “Intra-vehicle networks: A review”. In: IEEE Transactions
on Intelligent Transportation Systems 16.2, pp. 534–545 (cit. on p. 175).

Turchin, Valentin and Cliff Joslyn (1993). “The Metasystem Transition”. In: Principia
Cybernetica Web. Ed. by Valentin Turchin and Cliff Joslyn. Brussels: Principia Cy-
bernetica (cit. on p. 22).

Turchin, Valentin F. (1986). “The Concept of a Supercompiler”. In: ACM Transactions
on Programming Languages and Systems 8, pp. 292–325 (cit. on p. 97).

Turchin, Valentin Fedorovich (Oct. 1977). The Phenomenon of Science: A Cybernetic Ap-
proach to Human Evolution. English. 1st edition. New York: Columbia Univ Pr.
ISBN: 978-0-231-03983-3 (cit. on pp. 21, 22).

Turing, A. M. (Oct. 1950). “Computing Machinery and Intelligence”. In: Mind. New
Series 59.236, pp. 433–460. ISSN: 0026-4423 (cit. on p. 7).

Turing, Alan (1938). Systems of Logic Based on Ordinals. London Mathematical Society
(cit. on pp. 88, 97).

Turing, Alan M (1937). “On computable numbers, with an application to the Entschei-
dungsproblem”. In: Proceedings of the London mathematical society 2.1, pp. 230–265
(cit. on pp. 44, 87, 88, 91, 93, 94, 97, 98, 113, 117, 121, 141, 168, 183, 186).

— (1948). “Intelligent Machinery”. In: Machine Intelligence 5. Ed. by B Meltzer and
D Michie. Edinburgh: Edinburgh University Press (cit. on pp. 88, 91–93, 97, 99,
113, 114, 141, 182, 186).

208 Bibliography

Tëmkin, Ilya and Niles Eldredge (2015). “Networks and Hierarchies: Approaching
Complexity in Evolutionary Theory”. en. In: Macroevolution. Ed. by Emanuele
Serrelli and Nathalie Gontier. Interdisciplinary Evolution Research. Springer, Cham,
pp. 183–226. ISBN: 978-3-319-15044-4 978-3-319-15045-1 (cit. on pp. 15, 19).

Van Bulck, Jo, Jan Tobias Muhlberg, and Frank Piessens (Dec. 2017). “Efficient com-
ponent Authentication and Software Isolation for Automotive Control Networks”.
In: Submitted version. San Juan, Puerto RIco, USA (cit. on pp. 175, 178).

Van Bulck, Jo, Jan Tobias Mühlberg, and Frank Piessens (2017). “VulCAN: Efficient
Component Authentication and Software Isolation for Automotive Control Net-
works”. In: Proceedings of the 33rd Annual Computer Security Applications Confer-
ence. ACSAC 2017. New York, NY, USA: ACM, pp. 225–237. ISBN: 978-1-4503-
5345-8 (cit. on p. 175).

Veitas, Viktoras and David Weinbaum (2015). “A World of Views”. In: The End of
the Beginning: Life, Society and Economy on the Brink of the Singularity. Ed. by Ben
Goertzel and Ted Goertzel. Accepted for publication. (cit. on pp. 36, 52, 188).

— (2017). “Living Cognitive Society: A ‘digital’ World of Views”. In: Technological
Forecasting and Social Change 114, pp. 16 –26. ISSN: 0040-1625 (cit. on pp. 19, 25,
59, 75, 101).

Veitas, Viktoras et al. (July 2015). Governing the Future’s Power System: toward a method
of guided self-organisation for the Smart Grid. English. Working Paper. Brussels:
Global Brain Institute, CLEA-VUB (cit. on p. 180).

Veitas, Viktoras Kabir and Simon Delaere (Feb. 2018a). In-vehicle data recording, stor-
age and access management in autonomous vehicles. English. Technical report. Brus-
sels: imec-SMIT-VUB, p. 21 (cit. on pp. 173–175).

— (Feb. 2018b). Policy Scan and Technology Strategy Design methodology. English. Tech-
nical report. Brussels: imec-SMIT-VUB, p. 20 (cit. on p. 174).

Venkatasubramanian, Nalini and Carolyn Talcott (1995). “Reasoning About Meta
Level Activities in Open Distributed Systems”. In: Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing. PODC ’95. New
York, NY, USA: ACM, pp. 144–152. ISBN: 0-89791-710-3 (cit. on p. 125).

Vidal, Clément (June 2008). What is a worldview? Published in Dutch. (cit. on p. 52).
Vidal, Clément and Steven J. Dick (2014). The beginning and the end : the meaning of life

in a cosmological perspective. 2014th ed. Frontiers collection. Springer. ISBN: 3-319-
05061-3 978-3-319-05061-4 978-3-319-05062-1 3-319-05062-1 (cit. on pp. 43, 52).

Vitanyi, P. M.B. (2009). “Turing machine”. In: Scholarpedia 4.3, p. 6240 (cit. on p. 87).
Walker, Brian et al. (2004). “Resilience, adaptability and transformability in social–ecological

systems”. In: Ecology and society 9.2, p. 5 (cit. on pp. 67–69).
Wallace, Arthur (Feb. 2002). “The emerging conceptual framework of evolutionary

developmental biology”. In: Nature 415, p. 757 (cit. on p. 31).
Wang, Pei (Dec. 2005). “Experience-grounded Semantics: A Theory for Intelligent

Systems”. In: Cogn. Syst. Res. 6.4, pp. 282–302. ISSN: 1389-0417 (cit. on p. 133).
Watts, Duncan J. and Steven H. Strogatz (June 1998). “Collective dynamics of łqsmall-

world\r q networks”. In: Nature 393, p. 440 (cit. on p. 164).
Weeratunga, Kamal and Andrew Somers (June 2015). Connected Vehicles: Are We

Ready? English. Internal Report. East Perth, Western Australia: Main Roads WA,
p. 52 (cit. on p. 174).

Wegner, Peter (1998). “Interactive foundations of computing”. In: Theoretical com-
puter science 192.2, pp. 315–351 (cit. on p. 93).

Weinbaum, David R (2013). “A Framework for Scalable Cognition”. In: Proceedings
of the European Conference on Complex Systems 2012. Springer, pp. 559–567 (cit. on
pp. 26, 30, 62, 69).

Bibliography 209

Weinbaum, David R. (2015). “Complexity and the Philosophy of Becoming”. In:
Foundations of Science 20.3, pp. 283–322 (cit. on p. 72).

Weinbaum, David R. (Weaver) (Mar. 2018). “Open-ended intelligence”. English. PhD
Thesis. Brussels: Vrije Universiteit Brussel (cit. on pp. 3, 11, 44, 49, 56, 59, 83, 190).

Weinbaum, David (Weaver) and V. Veitas (Jan. 2017a). “Synthetic cognitive develop-
ment”. en. In: The European Physical Journal Special Topics 226.2, pp. 243–268. ISSN:
1951-6355, 1951-6401 (cit. on pp. 20, 49, 51, 52, 59, 67, 69, 70, 73–75, 78, 80, 81).

Weinbaum, David (Weaver) and Viktoras Veitas (Mar. 2017b). “Open ended intelli-
gence: the individuation of intelligent agents”. In: Journal of Experimental & The-
oretical Artificial Intelligence 29.2, pp. 371–396. ISSN: 0952-813X (cit. on pp. 11, 30,
49, 52, 62).

Weiss, Gerhard (1999). Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. en. MIT Press. ISBN: 978-0-262-73131-7 (cit. on pp. 27, 36).

Wickham, Hadley and others (2011). “The split-apply-combine strategy for data
analysis”. In: Journal of Statistical Software 40.1, pp. 1–29 (cit. on p. 105).

Wiener, Norbert (1950). The Human Use of Human Beings: Cybernetics and Society. en.
Boston: Houghton-Mifflin (cit. on p. 39).

Yampolskiy, Roman V. (2015). Artificial Superintelligence: A Futuristic Approach. Chap-
man and Hall / CRC. ISBN: 1-4822-3443-2 978-1-4822-3443-5 (cit. on p. 58).

Zenil, Hector et al. (Nov. 2012). “Life as Thermodynamic Evidence of Algorithmic
Structure in Natural Environments”. In: Entropy 14.11, pp. 2173–2191. ISSN: 1099-
4300 (cit. on pp. 56, 58).

	Abstract
	Acknowledgements
	Framing an interdisciplinary problematique
	Methodological approach
	A dangerous method
	A precarious landscape of inquiry
	Structure of the thesis

	A quest to understand
	AI research perspectives
	General artificial intelligence
	Narrow artificial intelligence
	Global brain
	Universal intelligence
	Freedom and constraint
	Open-ended intelligence

	Evolution of body, brain and mind
	Evolution beyond biology
	Units, levels of selection and interactions between them
	Hierarchies are not enough
	Co-evolution of structure and function
	Guided self-organization

	Insights from cognitive and neuro science
	Spreading activation
	Ecological rationality
	Rate distortion theory
	Coherence
	Integrated information
	Human cognitive development
	Enaction
	Sense-making
	A worldview

	Summary of the chapter

	Open-ended intelligence
	Introduction
	Theory of individuation
	Philosophy of information
	Assemblage theory
	Metastability
	Progressive determination

	Individuation of cognition
	Pre-, fluid and fully formed individuals
	Scales of individuation
	Synthetic cognitive development
	The scheme of cognitive development

	Summary of the chapter

	Decentralized computing for synthetic cognitive development
	The power of computational metaphor
	Through the lens of computation
	Symbolic versus sub-symbolic
	'Selective' and 'descriptive' information
	Deterministic versus non-deterministic computation
	Closed computing
	Open computing

	Conundrum of decentralization
	Consensus and synchronization
	Open-ended decentralized computing

	Stigmergic computing
	Process
	Message passing for process interaction
	Graph models for data structure
	"Classical" example of stigmergy

	Summary of the chapter

	Towards architecture for open-ended decentralized computing
	Actor model and framework
	Description of the model
	The fundamental principle of (de)centralized computing
	Extending the actor model with mobility and location

	Graph computing
	Graph databases
	Graph traversals
	Vertex-centric spreading activation
	Navigating infinite data structures
	Interaction of subjective perspectives
	Implicit auto-approximation
	Decentralized indexing

	Architecture for open-ended computing
	Implementation guidelines

	Summary of the chapter

	Offer networks: a model of decentralized exchange
	Economic context
	Software architecture
	Simulation engine
	Monitoring and analysis engine
	Simulation modelling

	OfferNets: informal specification
	Data structure
	Processes
	Research questions

	Centralized versus decentralized processes of OfferNets
	Setup
	Observed dynamics

	Summary and discussion

	Future avenues of application
	Open machines
	Prospective domains of application
	Smart mobility and cooperative intelligent transportation systems
	Distributed trust, privacy and security
	Internet of things and data economy
	Energy markets
	Cloud, edge and fog computing
	Decentralized applications and computing frameworks

	Summary of the chapter

	Summary and conclusion
	Summary
	Conclusion

	Bibliography

