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by Viktoras Kabir VEITAS

This thesis is an interdisciplinary design inquiry into the operation of intelligence. It
is aimed at conceiving a computational model of individuation of an open cognitive
system and builds upon the evolutionary systemic framework of open-ended intelli-
gence, which treats difference primal to identity, becoming primal to being, change
primal to stability and communication primal to object. First, we devise the princi-
ples of the open cognitive system from selected concepts, techniques and currents of
theoretical and pragmatic thinking in the domain of the evolution of mind, brain
and body. Then, using the metaphysical framework of open-ended intelligence,
these principles and requirements are integrated into a model of synthetic cognitive
development which rests on the mechanism of progressive determination of systemic
constraints in an evolutionary developmental way. Further, we formulate the com-
putational perspective of the stigmergic cooperation of a population of independent
and heterogeneous actors in terms of an open-ended decentralized computing model.
Finally, we specify the semantics of the computational model and software design
by integrating the actor model with graph computing and, through computational
simulation experiments, demonstrate the stigmergic computing in the domain of de-
centralized exchange. The open-ended decentralized computing model proposes a
path for conceiving, designing, simulating and engineering open systems by empha-
sizing the process of self-organization of an unconstrained space of possibilities. It
extends the paradigmatic shift of open-ended intelligence from identity to individ-
uation into the domain of engineering, particularly of artificial general intelligence
and the ambition to integrate advanced autonomous technologies into the fabric of
society.
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Chapter 1

Framing an interdisciplinary
problematique

I must create a system, or be enslaved by
another person’s. I will not reason and
compare: my business is to create.

William Blake, poet

Those who are skilled in producing
surprises will win.

Sun Tzu, military strategist

[..] focus at the intersection of theory and
practice. There is no progress without
friction.

Erik Meijer, computer scientist

1.1 Methodological approach

This work presents an interdisciplinary design inquiry into the operation of intelli-
gence. As interdisciplinary, it builds on knowledge from numerous domains of sci-
ence, including philosophy, artificial intelligence, computer, cognitive, and social
sciences, as well as practical know-how in fields such as information system man-
agement. As a design inquiry it aims at creating an intelligent system rather than
"just” formulating a theory with claims for generality or objectivity.

To my great surprise and wonder, the journey of the inquiry has led to immersion
in the most abstract philosophical frameworks that I could have imagined and has
contributed to the formulation of a conceptual approach to a synthetic and natural
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intelligence in terms of open-ended intelligence and individuation of intelligence con-
cepts. This approach has guided the whole inquiry, which has also been continu-
ously shaped, reformulated and adjusted by the process.

Any interdisciplinary inquiry by definition dissolves one or more boundaries
among scientific disciplines, modes of thinking and approaches. Therefore, it natu-
rally calls for a certain amount of necessary conceptualisation for the internal logic
of investigation. The broader the inquiry, the more theoretic conceptualisation is
needed in order to keep its integrity. The conceptual framework of the present in-
quiry is ultimately broad, with its roots in the philosophy of becoming and individ-
uation and the theory of evolution. Yet as much as we are tempted to formulate the
“concept of intelligence” , it only makes sense in terms of concrete phenomena, to
which it is inseparably connected - intelligent beings embodied in concrete bodies
and embedded in a concrete environment.

Hence, the choice of a design-based research methodology for this work is mo-
tivated by my conviction that an investigation of intelligence must be approached
not only via an interdisciplinary assemblage of concepts, principles and tools drawn
from various disciplines, but, even more importantly, through interweaving them
into a single thread — connecting ultimately abstract and broad to the most specific
and vice versa. Needless to say this thread of thought should cut through numerous
intermediate levels of abstraction. As a cotton thread immersed into a jar of salty
water acts as an attractor for ions and their solidification into a column of crystals,
the ambition of synthetic intelligence design provides a basis for organizing a rich
solution of interdisciplinary knowledge about cognitive living systems.

A few important methodological considerations can be formulated with the help
of this metaphor. First, the crystallization is a process of growth. This process, rather
than exact configuration of the resulting crystal, is the locus of attention and interest.
Likewise, in a design inquiry, assembling the interdisciplinary knowledge into an
image of an intelligent system is an iterative process without a clear success criterion.
Second, the exact result of a design inquiry is never known in advance, just as the
precise macro structure of the crystal is not determined by putting a thread into
a solution. Third, such a process has no determined end state, as a crystal stops
growing only because the thread is pulled out of the solution by the hand of a player
(considering that the pool of interdisciplinary knowledge is inexhaustible, contrary
to the saltions in a jar). The metaphor of crystallization goes deeper than illustrating
the research methodology of this thesis — it is a metaphor for a general process of
individuation and open-ended intelligence.

1.2 A dangerous method

As the metaphor of crystallization partially illustrates, a design-based interdisci-
plinary research is necessarily accompanied by a complex and therefore often incon-
venient context, which needs to be taken into account when engaging and proceed-
ing with the inquiry. Importantly, this context is also relevant to interdisciplinary
research in general.

If taken at face value and without much consideration of the context, the state-
ment “I will not reason and compare: my business is to create”, chosen for the epi-
graph of the current chapter, may sound unscientific or even utterly unreasonable —
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surely in science we have to reason and compare different approaches, possibilities,
solutions and models. Yet I chose this quote to illustrate the self-reinforcing nature
of evolutionary process that cognition is — emphasizing the serendipitous “consid-
erations” and “choices” that a process takes without supporting them with evidence
- simply because no evidence exists before a process of cognition starts (Weinbaum,
2018).

Interdisciplinary investigation presents the dilemma of the fine balance in choos-
ing between, on the one hand, broad coverage of many domains and ways of think-
ing, and, on the other, a deep investigation of each issue —neither of which is actually
possible due to constraints of time and space. None of these modes of thinking is in-
herently better or worse than another: it is easy to overlook important details when
taking a “generalist” view; but it is as easy to lose high-level understanding of an
issue due to digging too deep into details and specifics. We attempt to deal with
this dilemma by utilizing the principle which states that one should enter into the
details of each branch of investigation as deeply —but not more — as needed to justify
a chosen direction of further design inquiry from that point. Applying this principle
is a somewhat frustrating experience as it often involves a fair amount of uncer-
tainty over deciding to draw interim conclusions without investigating the issue "to
the end". This uncertainty is decreased by iteratively revisiting interim decisions
and considerations at every loop of the design inquiry, which brings about another,
rather technical, inconvenience — no stage of the design process (i.e. chapter of the
thesis in this case) can be considered finished unless the whole process is "finished".

The work persistently negates the primacy of top-down and bottom-up approaches
over one another and holds that both modes of thinking need to be used simulta-
neously, or, at worst, iteratively. Design and management practitioners and scien-
tists as well as software and hardware engineers face the issue of combining the
top-down and bottom-up thinking every day. They have developed a plethora of
methods and tools for dealing with it — under the labels of action research, iterative
design, test-operate-test-exit loop, orient-observe-decide-act loop, fast prototyping,
agile methodology and many more. All these methods build upon the same idea
of establishing a "top-bottom-top-bottom-top" design loop and iterating it as fast as
possible — in this way trying to capture both perspectives at the same time.

An important technique helps in navigating this fundamentally open-ended pro-
cess of the design inquiry in this work. The technique is the very action of emphasiz-
ing the "mechanistic" aspect of the process of cognition and intelligence —i.e. looking
at the living and intelligent complex system as a type of machine, which, being much
less deterministic than we usually attribute to the word, can still be simulated using
mathematical and computational methods. By this, we link philosophical concepts
of open-ended intelligence and individuation of intelligence to its concrete and pos-
sible manifestations.

1.3 A precarious landscape of inquiry

With a certain irony, we can see how the mechanistic aspect actually links images of
"human - biological — natural" to those of "synthetic — artificial — constructed" intelli-
gence, instead of, as so often perceived, differentiating between them. The irony lies
in the observation that, while many schools of thought implicitly or explicitly posit
irreducibility of the phenomenon of cognition to a physical process (using images of,



4 Chapter 1. Framing an interdisciplinary problematique

e.g., soul or else), at the same time cultures based on these schools of thought rou-
tinely treat humans as machines. The property of being human is often measured
by the performance of individuals according to their social role as citizens, soldiers,
good husbands or wives, dedicated employees and the like. It seems to me that this
is precisely why the idea that "AI will take over the world and exterminate humans'!
resonates so well in some (mostly "western") — societies. Partially it is because the
concept of intelligence is continuously being reduced to the efficient optimization
function of a behaviour in a particular environment (Bostrom, 2012), which Al is
poised to perform better. I believe that intelligence is much more than optimization
— it is an open-ended creative exploration for opportunities and growth via constant
re-definition of itself. The artificial intelligence programme — the quest to create a
synthetic mind - is a fertile context of exploring the open-endedness of intelligence
in the broadest possible sense.

I believe that there are many reasons why the collective psyche has developed
such inconsistent patterns of making sense of "human nature" and intelligence at
large. One of the reasons which I find fundamental and particularly interesting in
terms of this work has to do with the emphasis and desire for predictability of the
world. It is natural for brains and minds to search for repeating patterns in envi-
ronmental stimuli and infer causal relationships between them. This process lies at
the core of making sense of the world, everything around and ourselves — hence in-
telligence. Almost always we interpret sense-making as a some sort of asymptotic
optimization process aimed at acquiring the “true” or “best” picture of the world,
“correct” thinking and “useful” behavioural patterns. This is a presumption that has
proved to be of immense value for the development of the human mind, culture and
science, yet is precisely the one that I would like to challenge — not because it is not
“true”, but because I believe it to be a special case of a broader process of individ-
uation of intelligence, which is divergent rather than convergent. In this thesis the
divergent aspect of the process of intelligence is investigated as manifested in de-
centralized computing and the reflexive nature of distributed intelligence and social
systems.

Usually, making sense of anything is related to finding some order within dis-
order — so constructing a model of reality and exposing it to rigorous checking and
testing against that reality. This is the so-called hypothetico-deductive method of
science. A deep underlying assumption behind the method is that there is an order
that can be found. So thinking in this case starts from assuming the order, devising
a model of it and then augmenting and changing it, if it does not stand up to what-
ever tests the world presents. Another way of thinking, which we are embracing
and advocating here — without denying the hypothetico-deductive one — is starting
from the assumption of disorder and bringing order to it by devising models and
explanations. It may sound like a subtle nuance, yet conceptually it makes all the
difference in the world — as it introduces the need to "to put into the driver’s seat" a
subjective perspective of an entity that makes sense of the world. The central ques-
tion becomes not “what is order or what is disorder” but how order comes about
from disorder. In other words — how the process of self-organization happens — first
and foremost in the perceiver’s mind. For the purposes of this research it means
that we are mostly attending to the question of how models and images of the world
are devised that make sense in that world for a particular subject rather than what
the true or correct models are. If we translate this principle to the quest for artificial

'https:/ /en.wikipedia.org/wiki/Al_takeover
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general intelligence, the resulting architecture should encompass a mechanism for
creating images of the world by making sense of the unknown and unknowable —
via embodying open-ended intelligence principles.

The prevailing emphasis on asymptotic processes has peculiar spillover effects
upon other concepts. In particular, the concepts of “computing” and “computa-
tion” are often by default considered predictable and deterministic processes. Of
course, the focus on deterministic computation (clearly related to the desire for pre-
dictability of the world) is well understandable since why would anyone want to
start a computational process which was not known to lead to "useful" results when
criteria for "usefulness" could be defined before starting a process? Even so, it is
first of all consequential to note that deterministic computation is a special case of
non-deterministic computation?, and therefore the concept of computation covers
both. Second, there is at least one large family of systems (complex adaptive systems —
which cannot be understood by breaking them into parts) and related processes (self-
organization of structure and patterns without external control) that are inherently
non-deterministic. An important corollary of this thesis is that the essentials of com-
plex adaptive systems and self-organization are more important for operation and
development of society, intelligence, cognition, living systems and evolution at large
than any deterministic (or even probabilistic) processes observable with respect to
them. I hope at least to show that it is a valid perspective to consider — but of course
aim at convincing the reader that it is a much richer perspective, having practical
importance when designing and operating artificial systems exhibiting increasing
levels of autonomy and intelligence. This does not deny the value of understanding
and designing predictable and deterministic processes — once again considering that
they are special cases of non-determinism. The questions of interest are then: how
does an inherently non-deterministic process start to behave predictably, or how can
it be modelled as such? How do the constraints of such process come to be from
nothing and how can we formulate all this in computational terms?

With respect to the domain of social science, I am of the opinion that a shift in
the perspective towards considering a divergent nature of intelligence, cognition,
social development and evolution at large is of more relevance than ever when the
exponential growth of technology and human population has accumulated a mo-
mentum powerful enough to pivot dynamics of the whole system. This relevance
is clearly apparent in the climate change issue: it is clear that humanity is no longer
able conveniently to assume that it is not responsible for the reality (environmental
and otherwise) it lives in. My interest with respect to this example is to show how
the prevalent modes of thinking guide and largely constrain the space of future pos-
sibilities that we see, reflect upon and actuate — reflexively shaping the reality in a
way comparable to how self-fulfilling prophecies come “true”.

1.4 Structure of the thesis

The thesis is loosely structured into three interrelated parts — dealing with the con-
ceptual aspect (Chapters 2 and 3), computational aspect (Chapters 4 and 5) and
domains of application (Chapters 6 and 7). Chapter 2 discusses relevant existing
and historical perspectives to Al research, evolution of brain, body and mind with

2See debate about deterministic vs. non-deterministic Turing machines in Section 4.2.3 Determinis-
tic versus non-deterministic computation on page 86.
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insights from cognitive and neuro-science. Chapter 3 presents the open-ended in-
telligence philosophy and its roots in the philosophy of individuation, and posi-
tions both historical perspectives and interdisciplinary approaches towards evolu-
tion of life and mind within it. In Chapter 4 we investigate the computational as-
pects of open-ended intelligence and develop a model of open-ended decentralized
computing. Chapter 5 proposes and discusses concrete models for implementing
open-ended decentralized computing and proposes the architecture that integrates
two paradigms — the actor model of computation and graph computing. Chapter 6
presents an example of preliminary implementation of the software architecture of
open-ended computing, utilizing the concept of decentralized exchange. Chapter 7
discusses broad domains of applicability of the open-ended decentralized comput-
ing model and other prospective avenues of its implementation. Finally, in Chapter
8 we look at what came out from "keeping a thread in a jar of salty water" in terms of
integration of conceptual, computational and software development perspectives.
Further, in terms of future research, the relevance of the open-ended decentralized
computing model for dealing with socio-technological challenges and fostering ad-
vances of the human society are discussed. With this structure we attempt to ex-
pound the highly interrelated material in a linear manner. This is possible only par-
tially, since the value of interdisciplinary research comes first and foremost from
interconnectedness of knowledge from different disciplines, whereas these connec-
tions are largely cyclical. I have made my best efforts to introduce earlier concepts
that are used later. Still, since the relations between these concepts are in large part
the content of this work, the text includes many internal backward and forward
references. To best fully appreciate these relations it is advisable to read at least
Chapters 2, 3 and 4 straight through and only then follow the internal references.

A few more technical issues before we proceed. First, I purposefully use first
person pronoun "I'" and third person pronoun "we" interchangeably throughout the
text. The default pronoun is "we", which reflects the approach that ideas do not
have a single source and emphasizes the "decentralization" of the thinking process
as well as inviting the reader to participate in it. The pronoun "I" is used for denoting
my more subjective intuitions, perspectives and images. Second, double quotation
marks are used both for denoting quotes of other people and a figurative speech.
Third, both italic and bold text is used for denoting definitions, to draw attention or
simply accentuate words and sentences without following any more strict rules of
using them.



Chapter 2

A quest to understand

2.1 Al research perspectives

The modern quest for creating machines capable of thinking like humans began
around the middle of the twentieth century, undoubtedly triggered by the advent
of digital computers. Two major events are usually mentioned as indicating the be-
ginning of the artificial intelligence (AI) research programme: Alan Turing’s article
“Computing Machinery and Intelligence” (Turing, 1950) and the Dartmouth Sum-
mer Research Project on Artificial Intelligence of 1956.

In the course of six decades of research and scientific and popular discourse
around Al, a number of informal and formal descriptive terms have emerged, aimed
at indicating different aspects or types of intelligence, as well as research perspec-
tives. We review the major concepts and the contexts in which they are used in
order to pave the way for further discussion and illustrate the precariousness and
controversy around the concept of intelligence at large.

2.1.1 General artificial intelligence

General artificial intelligence (AGI) is considered by its proponents a return to the
roots (Goertzel, Pennachin, and Geisweiller, 2014) of the original Al research pro-
gramme formulated by the organizers of the Dartmouth Workshop in 1956 as “an
attempt [...] to find how to make machines use language, form abstractions and con-
cepts, solve kinds of problems now reserved for humans, and improve themselves”
(McCarthy et al., 2006).

With the aim of coming up with a standard definition of universal intelligence,
Legg and Hutter (2007) collected over 70 definitions of intelligence and differenti-
ated them into three broad categories: (1) collective (found in encyclopaedias and
dictionaries), (2) psychologist and (3) Al researcher definitions. They then distilled
their own account — intelligence measures an agent’s ability to achieve goals in a
wide range of environments — by observing the most common features used for de-
scribing intelligence:
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e embodiment: a property that an individual agent has as it interacts with its en-
vironment or environments;

e goal directness: related to the agent’s ability to succeed or profit with respect to
some goal or objective;

o ¢fficiency: dependence on how able the agent is to adapt to different objectives
and environments.

Likewise, Goertzel (2009) proposes a notion of efficient pragmatic general intelli-
gence and defines it as the capability of a system to choose actions maximizing its
goal-achievement, based on its perceptions and memories, and making reasonably
efficient use of its computational resources.

A somewhat less pragmatic, but still computationally expressible definition is it-
erated by Battaglia et al. (2018) with relation to linguistic theory, referencing Chom-
sky (1969) and Humboldt (1988), that intelligence is the infinite use of finite means
in which a small set of elements can be productively combined in limitless ways.

2.1.2 Narrow artificial intelligence

As defined by Kurzweil (2005), narrow Al refers to machines and algorithms which
perform a specific function that once required human intelligence to perform, and
does it at human levels or better. The difference between the concepts of "general"
and "narrow" Al seems to be "only" that the latter emphasizes different functions
considered intelligent, while the former emphasizes the integration of these func-
tions into a single system capable of more than the sum of its parts. Interestingly,
the definition of "narrow" Al is mostly used by AGI researchers to distinguish their
research programme from the multitude of research areas in machine perception,
natural language processing, machine learning, sensor fusion, neural networks, and
many others, which, for arguably historical reasons, have been placed under the
umbrella of Al research (Goertzel, Pennachin, and Geisweiller, 2014).

Yet, while the historical separation is obvious, the conceptual borderline is not
that straightforward, especially considering the latest achievements of the "narrow"
AI'. As a research field, "narrow" Al holds the potential and ambition to reach the
original Al agenda, albeit this has started to be vocalized only lately. For example,
Jiirgen Schmidhuber, one of the pioneers of "deep learning" techniques, powering
much of the current success of "narrow" Al, envisions how artificial general intelli-
gence could grow out of current specialized pattern recognition networks using the
principles of reinforcement learning (Kahrs, 2017).

2.1.3 Global brain

The global brain is a metaphor for an emerging intelligent network that is formed by
all people with computers, knowledge bases and communication links that connect
them together (Heylighen, 2002b). Following the metaphor, the global brain is the
nervous system of the organism of human society. The origin of the concept can be
tracked at least to the middle of the twentieth century, yet gained a scientific and

! AlphaGo - an AI Go player; Libratus — an AI Poker player
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technical perspective with the rise of computer networks, the internet and social
networks.

Apart from social, organismic, philosophical, utopian, technical, cybernetic and
many other perspectives, the global brain metaphor first of all emphasizes the con-
cept of distributed intelligence, which emerges from a network of interacting heteroge-
neous agents of lower capabilities. The relation of intelligence and network structure
is strongly grounded in neurophysiology and is very well reflected in Al research
and practical applications. A network of interconnected and interacting processes is
largely regarded as a correct image of an intelligence machinery by pioneer as well
as contemporary Al researchers (Goertzel, 2002; Minsky, 1988) and forms the basis
of the connectionist approach.

Relations in a network naturally represent interactions and interrelations among
many heterogeneous agents that are dynamic, seemingly chaotic, evolving, and do
not fit into clear logical and semantic structures. Yet the main message of the global
brain metaphor lies in its emphasis on the importance of self-organized coordination
of decentralized processes. Actually, all intelligence is essentially decentralized and
distributed, albeit to a different degree: brains and minds are products of interac-
tions of neurons and coordination of neural activity in brain areas; collective intelli-
gence of eusocial insects originates from their interaction via pheromone trails; the
intelligence of civilizations and societies as well as of companies and organizations
emerges from coordination among individual humans. In terms of the conceptual
perspective that we embrace in this work, the fundamental mechanisms of intelli-
gence transcend boundaries of these concrete embodiments and forms. We there-
fore consider artificial general intelligence, global brain research and distributed in-
telligence all as aspects of the same quest for understanding intelligence at large —
mutually informing and enforcing rather than contradicting each other.

2.1.4 Universal intelligence

The theory of universal intelligence provides a formal definition of a universally
intelligent agent (AIXI), able “to achieve goals in a wide range of environments”,
which conforms to the definition of artificial general intelligence given above. Direct
practical application of this theoretical and mathematical abstraction of an intelligent
agent requires specific optimization mechanisms and algorithms for achieving use-
ful down-scaling of an otherwise incomputable model (Legg, 2008). A “practically
universal intelligent agent” optimizes its behaviour with respect to a given environ-
ment (or set of environments) by running iterative cycles of observation, learning,
prediction, decision, action and reward (Hutter, 2012, 2013). Agent-environment
interactions are modelled by formalizing both agent and environment as probabilis-
tic functions each feeding its output to the other’s input (Legg, 2008). Remarkably,
general agents, built using this formalism and these techniques, are able to learn
different (albeit rather simple as of now) environments without any context-related
adjustments.
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2.1.5 Freedom and constraint

In the context of the quest for creating synthetic intelligence, concepts of general
artificial intelligence, narrow artificial intelligence, global brain and universal intel-
ligence represent complementary research perspectives rather than competing the-
ories. These perspectives more often interact by enriching rather than denying each
other’s results or theoretical approaches. Even if one of them (and "narrow" Al cur-
rently seems to be in the lead) provides an essential breakthrough for the Al research
programme, it is never isolated from important influences from and repercussions
to other perspectives.

One of the ways to see how the Al research perspectives interact is to identify
conceptual axes along which they take distinct approaches. The following axes ex-
plain well differences and similarities:

o Environmental interaction: how much the behaviour of a theoretical Al agent
and its implementation allows for a change, depending on the influence of an
environment; a usually overlooked aspect of this axis is the degree of agent’s
influence upon environment.

o Goal directedness: how much the agent’s behaviour is guided or can be ex-
plained by a-priori defined goals and values and how much these goals can
change or adjust to circumstances.

e Efficiency: how important efficiency and optimal behaviour considerations are
for a given perspective.

Obviously, these axes are not orthogonal — efficiency can be considered only with
respect to a goal of behaviour, while development of goals and values is often related
to the degree of environmental interaction. Furthermore, they are not exhaustive —
i.e. there are and always will be many more axes according to which intelligent be-
haviour can be discriminated and analysed. Yet we can distinguish one overarching
principle which grasps well the positioning of any perspective on any conceptual
axis depending on how much constraint is imposed upon an agent. The principle is
built upon the observation that each axis is as useful as the degree to which it enables
us to grasp how much Al architecture allows for its own development in terms of
interactions with environment, goal directness, efficiency and resource utilization.
This principle is henceforth called freedom and constraint.

We can informally map all Al research perspectives in the continuum between
complete freedom and ultimate constraint. The quest for synthetic intelligence can
then be understood as a search for a balance between freedom and constraint in
terms of specific manifestations of intelligent behaviour (agents, organisms, Al ar-
chitectures, etc.) with respect to specific contexts (goals, environments, etc.). Like-
wise, natural evolution "searches" for the same balance in each and every species
and organism.

Freedom Constraint
Open-ended Artié General }man—Level Narrow Al Deterministic

intelligence Intelligence Intelligence algorithm

FIGURE 2.1: Research perspectives as approximately positioned on
the freedom and constraint axis.
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2.1.6 Open-ended intelligence

Open-ended intelligence is a novel theoretical approach to general intelligence pro-
posed by Weinbaum and Veitas (2017b) and is:

a process where a distributed population of interacting heterogeneous agents achieves
progressively higher levels of coordination. In coordination, here we mean the lo-
cal resolution of disparities by means of reciprocal determination that brings forth
new individuals in the form of integrated groups of agents (assemblages) that ex-
change meaningful information and spontaneously differentiate (dynamically and
structurally) from their surrounding milieu (ibid., p. 14).

Open-ended intelligence is a philosophical concept which first, allows for the max-
imum freedom (see Figure 2.1) and second, defines intelligence not in terms of its
specific manifestations or features, but in terms of a non-linear process of bringing
about precarious balances between the freedom and constraint invited and supported by
specific contexts.

In contrast to open-ended intelligence, all of the aforementioned types of intelli-
gence are examples of goal-oriented intelligence, which is characterized by (1) a more
or less sharp agent-environment distinction where environment is independent of
the agent’s behaviour and is objectively knowable; (2) agents having a priori given
goals while interacting in a knowable environment and (3) reward-driven behaviour
with respect to goals.

The approach to intelligence as a goal-directed behaviour is well established and
a prevalent mode of thinking — not surprisingly so, given its practical value in many
domains, including psychology, robotics and Al research. James (1890), in his semi-
nal study of the human mind, already chose to follow the principle that “[t]he pur-
suance of future ends and the choice of means for their attainment are the mark and
criterion of the presence of mentality in a phenomenon” (ibid., p. 8).

While goal-oriented intelligence is the measure of an agent’s competence to match
actions to observations such that it will achieve optimal results in a variety of envi-
ronments, open-ended intelligence is the process of emergence of intelligence itself, in-
cluding goal-directed intelligence and its manifestations. Open-ended intelligence
therefore considers maximally fluid environmental interaction by encompassing pro-
cesses of agent-environment differentiation and formation of the agent’s identity in
the first place. Moreover, open-ended intelligence includes the processes of goal and
value formation as well as determination of problematic situations which lead to
goal formation. Finally, agents do not have a priori goals or values and interact with
other similar agents in the environment shaped by the interaction itself.

The goal of this chapter is to introduce and briefly describe philosophical and
theoretical concepts which are essential for conceiving actual mechanisms of the
process of becoming intelligent. Conceiving, engineering, designing and building of
intelligent machines based on the concept of open-ended intelligence is the direction
of this work. The metaphysical framework of open-ended intelligence is developed
in depth and breadth by Weinbaum (2018). If we ask ourselves, which domain of
science and philosophy, which process observable in nature and theory most closely
embraces the notion of maximum freedom, the answer is quite obvious: evolution. It
is the best known exemplar of the open-ended intelligence process. Other domains
closely related to the concept are complex adaptive systems, complexity science and
network science. Therefore, we next attend to these and related domains from the
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perspective of open-ended intelligence.

2.2 Evolution of body, brain and mind

Biological intelligence is a property of living organisms and has evolved with them
through the evolutionary process of phylogenetic development. Importantly, living
organisms are those which extend the phylogenetic development of species into the
onto-genetic and cognitive development of an individual. For example, humans are
considered intelligent as a species, which is the result of phylogenetic development,
yet with respect to a concrete individual — an embryo or a new born baby - it is
only a potentiality which has to be realized via long dependency on caretakers and
interaction with the environment. Brain imaging studies have demonstrated not
only that the human brain undergoes significant neurophysiological development
during the first years of life, but also that it continues well beyond infancy and up to
25 years of age (Lebel et al., 2008, p. 9-10 ).

The perceived borderline between phylogenetic and onto-genetic is manifested
by the notorious “nurture versus nature” debate of whether genes or environment
cause variation in human traits. From the perspective of freedom and constraint
(Section 2.1.5) phylogenetic, onto-genetic and subsequently cognitive development
are phases of the same process of progressive determination of constraints within
the initially unbounded “space of possibilities”. Progressive determination is the
very central concept for this thesis which will be explained in detail later in Section
3.2.4 and referenced many times throughout the work. In a nutshell, it is a mecha-
nism explaining how constraints that guide development of a system progressively
emerge within the very same process of development — creating the "space of pos-
sibilities" of further development?. It is somewhat tempting to position phyloge-
netic development of species, onto-genetic development of an individual brain and
body, and cognitive development of mind and its intellectual faculties into sequen-
tial stages. While such categorization makes sense for descriptive purposes, our aim
here is the formulation of a conceptual framework of progressive determination —
not for the purposes of description of how the known forms of intelligence have
evolved (e.g. humans), but rather for envisioning its open-ended possibilities for
evolving unknown forms of intelligence (e.g. artificial general intelligence).

Progressive determination devises a mechanism of formation of individuals which
is, first and foremost, an evolutionary process. In the popular discourse, evolution-
ary theory is most often associated with the somewhat simplified representation of
Darwin’s original work in terms of variation, selection and propagation of organ-
isms. Yet evolution and its theory is so fascinatingly rich, multifaceted and growing
from myriad internal discussions and theoretical perspectives, all having their share
of empirical examples in the pot of life, that phrasing something as an evolutionary
process merely means that "gods were not involved". Eldredge (2016) formulated

’The often used image of possibility or solution "space" is a powerful metaphor for describing the
processes about which we are talking. At the same time it is somewhat misleading — a possibility
space is often defined as an already existing structure which has to be searched or traversed by agent(s).
Importantly however, from the perspective of open-ended intelligence, the space is not defined a priori
- it is created by the agent(s) in the very process of traversing it. From a philosophical point, this is a deep
distinction, worth mentioning and keeping in mind while conceiving open-ended intelligence process.
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well how evolutionary theory is “[t]he elaboration of causal mechanisms underly-
ing a process of ancestry and descent that interlinks all organisms from the incep-
tion of life to the present”. While fitting into evolutionary framework, the concept
of progressive determination is of course influenced by, builds on and extends se-
lected aspects of its body. We will therefore discuss here these aspects which help to
consolidate and understand the concept of progressive determination.

2.2.1 Evolution beyond biology

A rather old idea that evolution can explain the increase of complexity in domains
other than biology was revived by Campbell (1997), who formulated the universal
selection theory and applied it to explain the evolution of knowledge. The universal
selection theory is in the spirit of Darwin’s framework and states that for any fit be-
tween system and environment, three processes should take place (Heyes and Hull,
2001): (1) blind variation? (2) selective retention of variation and (3) preservation or
propagation of variations.

Evolutionary epistemology is the term introduced by Campbell (1974) and in simple
terms signifies an approach that considers knowledge creation as an evolutionary
process (Gontier, 2006). The key concept in the evolutionary epistemology research
programme is the one of vicarious selectors. It is based on the idea that nervous and
cognitive systems of organisms internalize complex patterns of environment in a
form of knowledge and memory. This knowledge is used for anticipating or "imag-
ining" environmental responses and selecting those which have a higher probability
of success if actually acted out — hence "vicarious". Arguably then, nervous systems
have evolved precisely in order to hold the vicarious selectors in memory and map
and recognize progressively more complex patterns of the organism’s interaction
with the physical world — which pretty much fits the definition of knowledge. Most
importantly, the concept of vicarious selectors implies that variation and selection
happen at more than one level — most probably in the cascade of levels where vari-
ation at each level is selected by the more or less "vicarious" selectors on the upper
level. Such cascades of levels of variation and selection have acquired the name of
nested hierarchies of vicarious selectors (Heylighen, 1995).

Evolutionary epistemology allows us to consider cognitive, cultural and social
aspects of life as results of the same process that powers biological evolution and
the overall increase in complexity. Remarkably, it implies that all that evolution does
is create knowledge, albeit in different forms. Conceptually, biological organisms —
bodies of plants, animals or any imaginable creatures of the world — are a form of
memory, of how to live, grow, interact, procreate and die within the given environ-
ment and with other fellow organisms. The fact that part of this knowledge creation
process gets extended from physical and biological into neural and cognitive, al-
lows the application of the same principles for understanding them, with, of course,
proper appreciation of the multifaceted nature of the evolutionary process itself. A
particularly illustrative example of the generality of these principles is their applica-
tion in computer science, Al and robotics for developing systems which create local
knowledge about certain physical properties of their environment (see Box 2.1).

*Note, that "blind" does not mean "random" — the variation can very well be biased by, for example,
developmental constraints. Yet it is always blind with respect to the selective pressures in a sense
that there is always considerable uncertainty on the level of variation about which variations will be
selected.
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Box 2.1: Evolutionary computing and particle filters

The principle of blind-variation-and-selective-retention has been success-
fully reflected and utilized in the field of computer science and Al in the form
of evolutionary computation. It is a family of algorithms based on generating
large sets of candidate solutions which are then selected according to a prede-
fined fitness criterion or function. Complete algorithms often involve many
iterations where subsequent generations of candidate solutions are generated
by mutating the most successful solutions in a previous generation — resulting
in the evolution of the overall solution towards a target. Many variants of evo-
lutionary computation exist, tailored for different applications and contexts.
These algorithms have proved to be very successful in application domains
related to high degrees of uncertainty — namely, robotics and Al, which deal
with the messy physical and social world.

Particle filter is an illustrative example of how simple principles of univer-
sal selection theory are used in practice for solving contemporary robot local-
ization problems (Thrun, Fox, and Burgard, 2005). Considering that a robot
has a certain number of sensors capable of sensing its environment (cameras,
radars, ultrasonic sensors, etc.) and a reference map (e.g. the plan of a build-
ing), the particle filter method works in steps resembling those of variation,
selection and propagation:

i. A large number of hypotheses about robot location is generated ran-
domly (variation step);

ii. Each hypothesis is compared to the actual readings from robot sensors
and the probability of correctness (fitness) is calculated (selection step);

iii. The new set of hypotheses is generated by probabilistically choosing the
ones from the old set depending on their fitness criteria — the successful
hypotheses have more chance of being selected (propagation step).

iv. Steps 2 and 3 are iterated until the acceptable confidence levels for robot
location are achieved.

Note, that localization is a hard problem and sometimes considered the most
fundamental problem in providing autonomous capabilities for robots (Fox
et al., 2001) and, hence, their intelligence. Particle filters appeared to be an
extremely successful, efficient, fast and simple method to deal with uncer-
tainties related to errors in sensor readings, ambiguous maps, movement and
other real world problems. Conceptually, a robot with a particle filter can be
seen as roughly implementing the mechanism of a "nested hierarchy of vicari-
ous selectors” (see Section 2.2.1) which draws a clear parallel between creation
of knowledge in natural and artificial worlds.

2.2.2 Units, levels of selection and interactions between them

In evolutionary theory, a biological entity which is the subject of natural selection is
called a unit or level of selection. A heated debate persists among evolutionary scien-
tists about what the “true” unit of selection is (Lloyd, 2012) — arguments and exam-
ples exist for treating gene, cell, individual organism, behavioural pattern, group,
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species or even higher levels as such units. My position follows that of Lewontin
(1970) in that “[t]he generality of the principles of natural selection means that any
entities in nature that have variation, reproduction, and heritability may evolve. [...
These] principles can be applied equally to genes, organisms, populations, species,
and at opposite ends of the scale, prebiotic molecules and ecosystems”. This does
not mean that units and levels of selection are not important — rather that evolution
operates on different units and levels simultaneously, albeit arguably with different
levels of impact on the overall dynamics. Furthermore, the question and mechanism
of interaction among different levels is of major significance.

There are a number of scientific perspectives which try to develop concepts in
order to understand relations and interactions among different observed levels of
organization in complex systems. Témkin and Eldredge (2015) explore the role of
networks and hierarchies in biological evolution. Applying the principles of com-
plex systems and the role of nested hierarchies in understanding their underlying
dynamics, they endorse the hierarchical perspective to evolutionary theory. The ar-
gument is that much of the complexity of biological evolutionary phenomena stems
from the synergetic effect of idiosyncratic processes at different organization levels
and dynamics of inter-level interactions (Figure 2.2). Stable patterns observable in
living systems are due to the “nested hierarchical architecture of the nature’s econ-
omy” — as nested networks are very robust to external perturbations.

Lower Level

Focal Level

Upper Level

FIGURE 2.2: A diagram of global dynamics in a hierarchy, adapted

from Témkin and Eldredge (2015). Intra-level direct interactions are

shown as solid links connecting individual entities (circles) within

networks at all the levels; inter-level indirect interactions represent-

ing upward and downward causation are shown as up and down
arrows, respectively.

The central to complex systems science concept of emergence — a phenomenon
of appearance of larger entities with new qualities from the interaction of smaller
entities — cannot even start to be formulated without postulating distinct and hierar-
chically ordered levels of organization. Therefore, the model of hierarchical evolu-
tion can be, and has been, usefully applied for understanding the broad domain of
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complex adaptive systems, including knowledge systems and scientific evolutions,
social systems and cultural development, brain, mind and cognitive development.

In general, systems are described by combining two perspectives: structural,
i.e. how a system “looks” in terms of wholes and parts; and functional, i.e. how a
system “works”. Not surprisingly, the hierarchical model can be applied to both
perspectives in terms of structural hierarchies and functional hierarchies. Structural
hierarchy is a set of hierarchical relations which describes how parts relate to the
whole. Functional (or organizational) hierarchy describes a situation when one part
or level of a system controls and directs the behaviour of another part or level. While
both structural and functional hierarchies are observed in most complex systems,
structural hierarchies are more typical for describing the nested structures of the
physical world (nucleus, atom, molecule, crystal, rock, planet, solar system, galaxy
and super-galaxy). Functional hierarchies, on the other hand, characterize better the
world of life, mind, culture and animal or human society (Heylighen, 1995).

Structural hierarchies

The seminal article of Simon (1962) laid the ground for looking at complex systems
via the perspective of structural hierarchies. Complex systems in the most general
sense are understood as those which are made up of a large number of parts that
interact in a non-simple way. In such systems, the “whole is more than the sum of
the parts, not in an ultimate, metaphysical sense, but in the important pragmatic
sense that, given the properties of the parts and the laws of their interaction, it is
not a trivial matter to infer the properties of the whole” (ibid., p. 2). The analytic
and descriptive power of this perspective is based on the observation that complex
systems are more stable and, actually, have a higher probability of evolving their
complexity when they exhibit some form of hierarchical modularity. That is, the
time required for the evolution of complex forms depends on numbers, distribution
and interaction of potential intermediate stable forms. Arguably, structural hierar-
chies themselves have evolved as an effective method for developing complex forms
and, therefore, are a basic architecture of complexity. The argument for a hierarchical
architecture of complexity is supported by probabilistic considerations and empiri-
cal observations.

Probabilistic considerations: evolution of complex systems.

Simon (ibid.) provides a simple example and simple calculations to show that a com-
plex system has a higher probability of evolving if and when it is “organized” hier-
archically from stable modules. Suppose there are two watchmakers who both are
in the business of producing the same type of watch consisting of 1000 interacting
elementary parts. The first watchmaker, named Tempus, has organized the process
so that all 1000 parts have to be assembled at once. If the process gets interrupted
by a phone call, visitor, or a small inaccuracy of assembling, an already assembled
part disintegrates. The second watchmaker, named Hora, has designed a process
in such a way that she can assemble 10 elementary parts into sub-assemblies, then
assemble those into larger sub-assemblies of 100 elementary parts, and finally as-
semble the whole watch of 1000 parts. The sub-assemblies at all intermediate levels
are stable in the sense that they can be securely stored. Therefore Tempus has to
start the whole assemblage process from the start each time it has been interrupted,
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while Hora can use previously completed sub-assemblies and repeat only the rel-
atively small portion of work of interrupted sub-assembly. It turns out, that given
these circumstances, Hora can expect to spend on average three orders of magnitude
less time for constructing one watch as compared to Tempus; actually Tempus has
an exceedingly small possibility of ever completing even one watch.

The mathematical formula for calculating the expected time for completing a task
subdivided into subtasks is given by (Growney, 1982):

s 1

=y lamp
Where T’ is the expected time for completing an assemblage of a system; s —a num-
ber of sub-assembly steps, U —a number of elementary units in a sub-assembly; and
p — the probability that the process will be interrupted during adding an elementary
unit to a system. Intuitively, the formula says that the efficiency of a hierarchical as-
sembly is a trade-off of probability of errors, cost of errors, the hierarchical structure
of the system (in this case the number of assembly steps) and the cost of a single
assembly step:

] 2.1)

e The larger the probability and cost of an error, the more modules are needed
for the same level of efficiency;

e Yet the higher the cost of an assembly step, the greater the increase in the num-
ber of modules and hierarchical levels reduces efficiency.

Even if watches were to be assembled by randomly fitting pieces together, sys-
tems having hierarchical subsystems are more stable and have more chance of oc-
curring; therefore many natural and living systems are hierarchical. However, the
metaphor assumes an a priori goal of the assemblage process. Yet unlike the watch-
makers, evolution does not have any plan, except endless experimentation with
functions and structures — as if watchmakers were allowed to come up with any way
or mechanism that can measure time. Even then, the necessity of measuring time
has to emerge from other structures and functions (e.g. agricultural, industrial soci-
ety, etc.) through their evolution. We therefore can ask ourselves: what additional
options and complexity is implied by the perspective to evolution as an open-ended
process without goals?

Empirical observations: “nearly-decomposable” systems

Simon (1962) also proposed the concept of the nearly decomposable system by observ-
ing that, in hierarchical systems, two different types of interaction of elements can
be distinguished: among subsystems and within subsystems. If the magnitude of all
or most important interactions among primary elements of a system are measured
and recorded, it is possible to construct a matrix of interactions which would have
the property of being nearly decomposable if the system is hierarchically structured.
Informally, a decomposable matrix is a matrix containing elements that could be as-
sembled into clusters having interactions within elements of their own cluster, but
no interactions among elements of different clusters. A fully decomposable matrix
would therefore represent a collection of independent subsystems which do not in-
teract with each other. Another extreme is a system where all primary elements are
interacting with the same intensity, i.e. the matrix of their interactions is not only
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fully non-decomposable, but also all elements are of similar size. Such system is flat —
i.e. it cannot be described by a structural hierarchy.

At least some of the systems can be approximated as nearly decomposable sys-
tems, which implies that the behaviour of each of their component subsystems (as-
semblages of elements) is approximately independent of the behaviour of other com-
ponents (Simon, 1962). Near-decomposability has been observed in the broad vari-
ety of systems ranging from “natural” (produced by evolution) to “artificial” (pro-
duced by the human activity), and the ones in between. The concept has been stud-
ied in terms of economic and social structures, genetic and developmental biological
models, physical and computing systems, and brains. Particularly interesting is the
study of complex computing systems as nearly completely decomposable systems
(Courtois and Ashenhurst, 1977).

A simple example suits well for understanding the concept of near decompos-
ability and investigating how it relates to the architecture of complexity. Suppose
that a hierarchical system under investigation is a house of a few rooms, each equipped
with separate cubicles (Figure 2.3a). We can define and measure interactions be-
tween cubicles in terms of the magnitude of heat exchange between them, which
could be represented in a matrix form (Figure 2.3b).

Al A2 A3 | Bl1 B2 | Cl C2 cC3
Al -- 100 -- 2 -- -
A2 [ 100 - 100 1 1 -
Al B1 C1 A3 | - 100 - | - 2| -
2 1 -~ | - 100 2 1
=2 B2 - 1 2100 - | - 1 2
A3 B2 c3 c1| - - ~ |2 ~ 100
(A) House plan c2 - 1 1 100 -- 100
c3| - - — | - 2| - 100

(B) Matrix representation of cubicle interactions in terms
of heat exchange.

FIGURE 2.3: Illustrative example of heat exchange between cubicles
and rooms in a house as a hierarchical system (adapted from Simon
(1962).

The matrix in Figure 2.3 is near decomposable because it can be arranged into
clusters of elements which interact much more intensely among each other than all
the other elements. Obviously, in the house example such patterns are caused by
the thermal insulation properties of walls between rooms and separations between
cubicles. While it is somewhat a stretch to think of a house as a complex system, the
same principles apply. Importantly, decomposability allows one to determine the
hierarchical structure of the system without knowing its plan or blueprint — provided
we can measure intensity of interactions among elements (Figure 2.4).



2.2. Evolution of body, brain and mind 19

FIGURE 2.4: Hierarchical structure of heat exchanges in the house -
note the resemblance to a diagram of global dynamics in a hierarchy,
by Témkin and Eldredge (2015) (Figure 2.2).

Drawing on the above description, we can make a few interesting observations:

e First, if it were possible to calculate a single measure of "decomposability" d of
a system, all systems could be positioned on a "continuum of decomposability"
of a form d € [0, 1] where d approaches 0 when a system is near-decomposable
(i.e. hierarchical) and 1 when it is “flat’. Most systems cannot be said to be fully
hierarchical or fully flat even if considering only one modality of interactions
between elements. An example of a different modality of interaction in terms
of an example with a house would be an exchange of air-flows between cubi-
cles. A more realistic complex adaptive system may involve many modalities
which could entail different hierarchical structures — see also Section 2.2.3.

e Second, the description of the hierarchical nature of a system depends on the
time-scale of the measurements of interactions between elements. These two
aspects are of greatest relevance to complex adaptive systems, which are highly
dynamic - i.e. the magnitude of interactions between their elements is con-
stantly changing. In such systems the measure of decomposability d may dif-
fer substantially depending on when the measurements are taken. Moreover,
since the measurement of interactions necessarily involves a period of time
during which the number of interactions is measured, the measure d also de-
pends on the chosen time-scale of analysis. In other words, the short-term
structure of the system may be different from the long-term structure and the
former may inform little about the latter (Simon, 1962; Veitas and Weinbaum,
2017).

e Third, even if the "total decomposability” d of a system stays the same across
different "snapshots” in time, the structure of clusters of interacting elements
could be entirely different.

e Fourth, but not the least at all, the hierarchical structure is grounded solely in
interactions among elements of the lowermost level. Heat exchanges among
rooms are sums of the exchanges between cubicles of respective rooms across
their boundaries (i.e. walls) — see Figure 2.4. It is easy to miss the importance
of this observation in the example of a house with clear physical boundaries
between assemblages of cubicles (i.e. rooms), where we could simply omit the
level of cubicles and measure directly the heat exchange between rooms — thus
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assuming the existence of real physical interactions on this level. Yet suppose
a different and much more complex and adaptive system — a brain. Here, we
can also distinguish three hierarchical levels: (1) individual neurons, (2) dis-
tinct brain areas (primary visual area, Wernicke’s area, Broca’s area, etc.) and
(3) the whole brain. Yet interactions among areas cannot be explained without
referring to the intensity of interactions on the neuronal level. There are no
clear boundaries, "gateway" neurons or "walls" which would allow the mea-
surement of interactions between areas directly, as in the case of the rooms
of a house?. The importance of this nuance becomes clear when considering
modelling and simulation of emergence of higher level hierarchical structures
from interactions of lower elements and explaining the influence of interac-
tions among the higher level structures on the overall system dynamics (see
Chapter 3).

A conceptually similar measure to the suggested notion of decomposability d
was proposed by the neuroscientist Tononi (2004) in the form of integrated informa-
tion ®, which will be discussed later in Section 2.3.5. In short, ® formally defines
coordinated clusters in networks of interacting agents across time and space (Wein-
baum and Veitas, 2017a) and is used by Tononi (2004) in developing an integrated
theory of consciousness. Intuitively, “[a] subset of elements within a system will con-
stitute an integrated process if, on a given time scale, these elements interact much
more strongly among themselves than with the rest of the system” (Edelman and
Tononi, 2000). Furthermore, the first and second observations hint at the importance
of the subjective perspective of the observer in seeing a system'’s hierarchical struc-
ture — an issue discussed further in Section 2.2.3 (in the context of model building)
and Section 5.2.5 (in the context of computational models).

Functional hierarchies

Functional hierarchies are observed when complex adaptive systems are analysed
from the perspective of how their dynamics are generated - i.e. how they “work”
rather than how they “look”. One of the early accounts for functional hierarchies in
planning and carrying out complex behaviour sequences was proposed by Miller,
Galanter, and Pribram (1960) and is based on a cybernetic perspective. First, it de-
scribes the “fundamental building blocks of the nervous system” — negative feed-
back loops — in terms of test-operate-test-exit (T.O.T.E) units (see Box 2.2). A TO.T.E
unit realizes the cybernetic principle of achieving a successful goal-directed action
by integrating feedback from “outside the unit” into whatever mechanism carries
out the action “inside the unit”. The mechanism of complex behaviour is explained
in terms of nested hierarchies of T.O.T.E units, where each operational component
of a unit is itself a full TO.T.E unit which realizes the negative feedback principle
at a lower level (see Figure 2.5b in Box 2.2). Similarly, the perceptual control the-
ory developed by Powers (1973) describes nested hierarchies of negative feedback
loops regulating the matching of an organism’s perceptions with environmental sit-
uations. Perceptual control theory differs from the control theory in engineering as
well as simple treatment of negative feedback in that it emphasizes complex interac-
tions between hierarchical levels: organisms act on their surroundings and environment
so as to control the effects the environment is having on them. Another account for

“Yet when several brains communicate between each other we again see 'real’ boundaries separat-
ing one human from another.
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functional hierarchies inspired by the theory of natural evolution was proposed by
Campbell (1974, 1997) in terms of “nested hierarchies of vicarious selectors” (as ex-
plained in the Section 2.2.1).

Box 2.2: Nested T.O.T.E units — cybernetic description of functional hierar-

chies

The concept of T.O.T.E units as models of negative feedback and their nested
hierarchies (Miller, Galanter, and Pribram, 1960) is based on an implicit pre-
sumption that actions, behaviour and underlying mental strategies are closely
related to the goal-oriented feedback loops. It maintains that actions of an or-
ganism (including mental actions) revolve around having a fixed goal and a
variable means to achieve that goal. A simple T.O.T.E scheme indicates that
a given behaviour is regulated by setting a goal, developing a test for figuring
when the goal is achieved and then performing operations with the available
means in order to change either the state of the system or the state of environment
(Figure 2.5a). When test criteria are finally satisfied, the process exits.

< Input Test ‘PC Exit >

Mismatch | Incongruence (-) (+) Match | Congruence 0
M Faited Test) (Test Succeeded) Test FExit

Operate Operate

Sub-exit

(A) Basic T.O.T.E scheme. A cybernetic system accepts
input from environment and produces output to the en-
vironment. It has a fixed goal (internally represented by
a test) of changing inputs to certain outputs and vari-
able means to perform such operation. The system se-
lects and tunes the operation for achieving its goals via
an "operate < test" loop by performing the operation
internally and checking results against test criteria. The (B) Nested hierarchy of basic structures.
loop is exited when test criteria are satisfied — i.e. the
output matches the goal of the system.

Sub-test! Sub-test?

Sub- Sub-

- s
operation’ operation

FIGURE 2.5: Graphical description of the test-operate-test-exit
concept, adapted from Dilts and Delozier (2000, p. 1434 ).

Taking into consideration that the output ("exit") of a simple T.O.T.E unit
can be the input to the higher level T.O.T.E unit, the general model of a func-
tional hierarchy composed of T.O.T.E units and corresponding subgoals can
be established (Figure 2.5b). The T.O.T.E model, despite its apparent simplic-
ity, lies quietly at the roots of cognitive psychology and cognitive science and,
remarkably, the symbolic perspective to intelligence and artificial intelligence.

A perspective which brings about the concept of functional hierarchies goes to-
gether with evolutionary thinking, which does not allow one to lose sight of how
these hierarchies emerge in the first place. The general theory which deals explicitly
with the emergence of control hierarchies in the process of evolution is the meta-
system transition theory (Joslyn, Heylighen, and Turchin, 1992). A meta-system
transition — the term coined by Turchin (1977) — is an evolutionary event which
brings about a higher level of organization in a complex adaptive system. From
the structural point of view, the new level can be said to integrate two or more sub-
systems at a lower level and in this sense is a metalevel with relation to them. From
the functional point of view, the higher level is said to control the activity (variation)
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of the subsystems at the lower level. Described in this way, a metalevel brings about
qualitatively new behaviours which cannot be described in terms of characteristics
of lower levels alone. Functional hierarchies emerge as a result of variation, repli-
cation and selection and can be described as nested levels of increasing control of
processes happening within the system.

Box 2.3: Meta-system Transition Theory

A metasystem transition is a process in the course of which an initial sys-
tem S gets replicated (with possible variations) into systems Si, Sa, ..., Sy.
The transition is guided by and simultaneously brings about a mechanism C'
which controls the behaviour and production of the S, Ss, ..., S, subsystems
(Figure 2.6).

S |—= S1 Sz Doc én

FIGURE 2.6: The metasystem transition (Turchin and Joslyn,
1993; Turchin, 1977)

From the functional perspective each control level is associated with a cer-
tain activity or aspect of a system. A metasystem transition creates a new type
of activity A’ by controlling the activity A of "lower" levels:

control of A = A’ (2.2)

Turchin (1977) describes human evolution as a series of metasystem tran-
sitions:

control of position = movement;

control of movement = irritability (simple reflex);
control of irritability = (complex) reflex;

control of reflex = associating (conditional reflex);
control of associating = (human) thinking;
control of thinking = culture.

The history of life and the universe can be conceptualized as such a se-
quence of meta-system transitions which lead to ever more complex, adaptive
and intelligent systems spanning physical, biological, social and cultural do-
mains. A meta-system transition can therefore be seen as a quantum of evolution
(Heylighen and Joslyn, 1995).
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Metasystem transition is first and foremost a process, which is rather difficult to
grasp by the descriptions of its “initial” and “final” products alone. Even if it is
described as such, it can only be done retrospectively. We only see control struc-
tures and functional hierarchies after they emerge and consolidate, yet we often miss
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vocabulary and conceptual tools for grasping the intermediate states and circum-
stances that guide the consolidation and dissolution of such structures in complex
adaptive systems.

Flat systems

Depending on how many hierarchical levels are observed (structural or functional)
in a given system, it can be described as having a "flat" or "deep" hierarchical struc-
ture. For example, the house of Figure 2.3 has two lower scale hierarchical levels
— rooms and cubicles. If, however, there were no rooms and the whole space was
divided into cubicles, it would have only one lower hierarchical level and therefore
would be completely "flat". Simon (1962) refers to hierarchical systems as "flat" at
a given level if the number of non-differentiated components at that level is large
(i.e. if it has a wide span). A completely "flat" system from the hierarchical perspec-
tive would be one where an observer was not able to identify any structure at all.
As much as we tend to understand systems in terms of their hierarchical structures,
there are many systems that do not have one — examples of natural systems which
can be regarded as such are gas, crystals, diamonds (ibid.) or a primordial soup of
elements at the dawn of life. "Flat" systems are also non-decomposable (see page 17).
This means that there is no way to determine their "actual" structural or functional
hierarchy because there is none in the first place. But does that mean that there is no
way for an observer to make sense of a "flat" system?

Any observable system, "flat" or "deep", is also a subsystem of a larger milieu;
therefore its detection is a matter of the degree of decomposability of that milieu.
Even considering an example of a house with concrete walls, there are still heat ex-
changes and air flows which permeate these boundaries —i.e. system-environment
interaction. There are systems, however, where boundaries are much more fuzzy
and identification of the system itself is not straightforward — just as the decompos-
ability of a complex adaptive system into hierarchical levels is not straightforward.

2.2.3 Hierarchies are not enough

First, let us see why the issue of hierarchies is considered important enough for such
rigorous attention. It is because hierarchy in the broadest sense is brought about by
an ability to distinguish and categorize — events, objects, processes, perceptions of
the world — by an observer. In this sense hierarchy represents order and the absence
of hierarchy is equivalent to disorder. In this sense creating order from disorder,
which is a process of becoming intelligent, can be said to be equivalent (or at least
closely related) to the process of seeing (or creating) hierarchies where there were
none before.

The importance of a subjective perspective

In order to answer the question of what it means to make sense of a "flat" system, it
is useful to think about what it means to understand (a system). Obviously, under-
standing (or making sense) always involves two parties — a system or environment
which is being made sense of and an observer or an agent which is the one that
makes sense. Classically, systems are considered as well defined and static structures
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which are objectively given, but complex adaptive systems such as brains, markets
and societies tend to be fuzzy, variable and to a certain degree “subjective” (Hey-
lighen, 2011, p. 2). I would like to propose a working definition of subjectivity in
this context: a description of a system is “subjective” when it is decomposable in hierarchi-
cal terms only by using extrinsic discriminating criteria (i.e given from outside the system);
different discriminating criteria result in dissimilar decompositions.

The discussion of this definition and its rationale is provided in Chapter 3 with
reference to the open-ended intelligence concept. For now, let us take into account
the importance that the subjective perspective plays in the process of sense making
and becoming intelligent.

The power and trouble of model building

The power of the concept of hierarchy is based on the empirical observation that for
many natural systems, a hierarchical description considerably increases their com-
prehensibility (Simon, 1962). For example, it is counter-productive to try to describe
interactions between every citizen of a country with citizens of another country in
order to understand international relations. Likewise, the higher behaviour of an
animal or a human cannot be comprehended (or even grasped) only via decipher-
ing and mapping interactions among all the neurons in their brains. Yet any gain
in comprehensibility is always accompanied by a certain amount of loss of informa-
tion about the system being described, even when the system is trivial. It is there-
fore important to remember, especially given the natural tendency of cognition to
search for stable patterns and invariant representations in otherwise not necessarily
ordered sensory input (Hawkins and Blakeslee, 2005), the existence of this funda-
mental trade-off between comprehensibility and loss of information. On a highly
conceptual level the phenomenon of understanding is closely related to the choice of
this trade-off, which is less trivial than often assumed.

We usually estimate the quality of our models by measuring their predictive
power —i.e. how precise is the information a model or a representation gives about
the structure and dynamics of an actual system. Consider for example an agent
embodied into an environment and possessing a cognitive system. For the sake of
illustration let the agent be an animal, its environment - the subspace of physical
reality with which an animal interacts and the cognitive system — its nervous sys-
tem. One of the major aspects that allows an animal to persist and thrive in a given
environment is that its cognitive system has capacities to propose adequate actions
in most of the environmental situations and contexts. Such capacities are directly
related to the predictive power of the internal model of the environment. Yet a pre-
cise representation of the environment is not feasible — an animal (as any bounded
system for that matter) has a limited memory and therefore the whole sensory space
resulting from interaction with the environment has to be efficiently modelled (com-
pressed, represented) in order to fit into its memory®. Furthermore, an adequate action
in an environmental situation implies the correct timing of the action — very often
the timing of an action is more important than the type of the action (consider the
classical fight or flight dilemma when faced with a mortal danger). To complicate the
picture a bit more, there is no general way to determine the timing requirements of

>Such ability can be expressed as a mechanism to come up with the representation that has reason-
ably small Kolmogorov complexity (Li and Vitanyi, 1997).
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an action in advance —i.e. a cognitive system has to be able to estimate when to stop
thinking and start acting "in real-time", as the situation evolves.

Here we will concentrate on three major aspects that determine the predictive
power of a model: (1) selection for relevance — which properties and variables out of
all available options are included in the model; (2) the degree of decomposability of a
system —how much of a system’s behaviour can in principle be reasonably explained
by a single model; (3) the structural efficiency of a model — how well a selection of
properties and variables can be organized in order to achieve the same or higher
level of predictive power;

These aspects determine the trade-off between the level of comprehensibility of-
fered by a model and the degree of loss of information about a system in the process
of making sense of it.

The degree of decomposability

As suggested on page 19, any system can be characterized by its degree of de-
composability. The degree of decomposability of a system is its natural property —
i.e. some systems are near decomposable and therefore allow for being represented
in terms of structural or functional hierarchies with a relatively small amount of in-
formation loss, while others do not. Most physical systems are nearly decomposable
and this fact alone has contributed immensely to the success of the scientific method.
Yet there are complex systems which are not easily decomposable without significant
loss of information. Non-decomposability is particularly characteristic of a class of
complex which are composed of interacting heterogeneous agents, e.g. society, brain,
world-wide-web, multi-agent computing systems and many more. Consider soci-
ety: it is always the case that an individual is a member of more than one group
or “category” (professional, sports, hobby, family, etc.) which cannot be easily ac-
commodated together (Veitas and Weinbaum, 2017). These systems are of particular
interest since I believe that comprehending (or making sense of) non-decomposable
complex adaptive systems is the major ability of cognitive systems and intelligence
at large. This at least means that we should not take the relatively high degree of de-
composability of natural systems for granted — and that the mechanism of making
sense of complex systems should be able to cope with any degree of decomposabil-

ity.

Selection for relevance

Luckily, there is a way to make sense of a non-decomposable system — by selectively
disregarding parts of information about it. Non-decomposable complex adaptive
systems can be described and comprehended only by selecting some of their proper-
ties that are significant for the purposes of the subject which interacts with the system.
The fact that decomposable or near-decomposable systems have “objective” criteria
for selecting the properties and variables which allow for a very precise description
of their overall behaviour should not foreshadow the need to select these variables
from all available options. Such selection implies the need for criteria which can
only be accounted for by considering how relevant they are for an agent making the
selection decision. First of all, this introduces the necessity to consider the subjec-
tive aspect of modelling when dealing with complex systems. Second, it hints that
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criteria of selection may differ across different subjects depending on their goals,
which often are not uniform. Third, selection criteria of the same agent may differ in
different environmental situations.

The process of selecting criteria for decomposing a given system into a hierarchi-
cal structure is closely related to what has been called selection for relevance in cog-
nition (Weinbaum, 2013). Selection for relevance is an attention mechanism which
accounts for a choice of attending to certain aspects of the sensory space available to
a cognitive system while relatively downplaying others. Let us define the effective
sensory space as the totality of all sensory inputs of a given intelligent animal. The
virtual sensory space is then the totality of all possible sensory inputs that can be
used for perceiving the physical reality. For example, humans heavily rely on vision
for understanding the world, while bats mostly use ultrasound and echolocation —
they operate in different species-level effective sensory spaces, which nevertheless
are sub-spaces of the overall virtual sensory space of the physical reality. Evolution
is a general mechanism of selection for relevance in terms of reducing the virtual
sensory space of the physical reality to the effective sensory space of a concrete cog-
nitive system. Likewise, at every moment and in every environmental situation, an
embodied cognitive system has the task of reducing its effective sensory space into
a unique combination of sensory inputs that leads to a decision and an action that
make sense in that situation. Yet even a single individual cannot constantly keep
full track of its own effective sensory space, at least due to the resource constraints
of time and memory. A consideration that a decision for an action in a specific en-
vironmental situation is a type of knowledge, and an approach that cognition is a
special case of evolutionary process of creating knowledge (see Section 2.2.1) leads
to the appreciation of the importance of selection for relevance in cognition. Not
surprisingly, therefore, attentional mechanisms — which are actual implementations
of selection for relevance in cognitive systems — are an important aspect of research
in psychology, cognitive science and Al. Even so, the selection for relevance aspect
of cognition and, moreover, its evolutionary nature, are largely neglected aspects of
cognitive systems research.

Structural efficiency

The structural efficiency of a model is a measure of how well given sensory knowl-
edge about a system is decomposed in terms of maximizing comprehensibility while
at the same time minimizing loss of information. It is related to the “optimization”
aspect of model building — the most researched and discussed aspect of science and
cognitive systems research which deals with finding the best model "fit" for a given
set of information about an actual system. Note that structural efficiency here is de-
fined not as a measure of the best model of a system, but as the best model of available
information about a system. This is a crucial difference that takes into consideration
the selection for relevance mechanism that prunes part (and maybe most) of the in-
formation about a system in order to arrive at the amount manageable by the specific
embodiment of a cognitive system®.

®See Section 2.3.3 on page 46 for an information-theoretical treatment of this process in terms of rate
distortion theory.
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Heterarchy

Heterarchy is a concept that accounts for the impossibility of describing interactions
among a system’s elements by positing a single system of hierarchical relations be-
tween them. A hierarchy is a structure of coordination among multiple agents in a
system in which an agent does not constrain other agents, by which it is itself con-
strained. In contrast, a heterarchy is a structure of coordination among the same
multiple agents in which an agent may simultaneously constrain and be constrained
by other agents (Weiss, 1999). McCulloch (1945) has introduced and used the con-
cept of heterarchy for explaining the reasonably ordered, yet non-hierarchical orga-
nization of the brain and cognitive structures. Another definition of heterarchy de-
scribes it as a relation of elements to one another when they are unranked but when
they possess the potential for being ranked in a number of different ways (Crumley,
1995).

In other words, heterarchies are networks of mutual influence without subordi-
nation (Heylighen, 2002a) yet with the potential of “collapsing” into a structure of
coordination that allows a system to perform computations or actions in a concrete
context. This process of “collapsing” into a structure of coordination is the process
of individuation (see further Section 3.2), where order emerges from disorder. We
could say that three aspects play their part in this process — (1) initial conditions —
i.e. the organization of "networks of influence without subordination"; (2) the emer-
gent structure of coordination that is observable after the process; (3) the process of
emergence itself. One of the most interesting findings of complex systems research
is that self-organizing systems are able to perform the most sophisticated computa-
tions when operating at the boundary between randomness — i.e. first aspect — and
order —i.e. second aspect (Crumley, 1995). Actually, the computation itself can be
said to emerge from this boundary — hence the term emergent computation (Minati,
Pessa, and Abram, 2009). While the focus of this work is conceiving and imple-
menting a computational framework that accounts for all three aspects, we consider
the process of emergence —i.e. the third aspect — as the most important and most ne-
glected — perhaps due to the difficulty of approaching it. Furthermore, the subjective
aspect of selection for relevance (see page 25) is instrumental for conceiving such a
framework.

The fundamental trade-offs

Based on the above I suggest that a major aspect of intelligence relates to dealing
with a fundamental trade-off between comprehensibility of a system’s environment
and the information loss about its "true" nature at each moment of comprehension.
We can relate this to another fundamental trade-off, which is the primary problem
solved by the whole field of computer science: the trade-off between memory and
time of computation. The relating link is the concept of bounded rationality, desig-
nating the rational choice of an agent operating in an environment while taking into
account its own cognitive limits in terms of knowledge and computational capac-
ities (Simon, 1982). Computational capacity (equivalent to the term computational
complexity in this context) is defined by the time and memory (space) required to
perform a given computation. If we look to the act of comprehension as a compu-
tational task, the computational complexity of this task is on the one hand deter-
mined by the comprehensibility of the environment and information loss about its
"true" nature (the first trade-off). On the other hand, the computational capacity —
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the amount of computational resources, needed for carrying out the task — is deter-
mined by the combination of time and memory (the second trade-off). Needless to
say that the computational capacity should match the computational complexity in
order for the task to be completed. Memory constraint is simply a natural charac-
teristic of a realistic cognitive system embodied in an intelligent animal or a digital
computer. Time is a constraint imposed by each and every environmental situation
in which a decision has to be made — e.g. making a move on a chessboard or start-
ing to run from a tiger in a jungle. Therefore, the relation between cognitive and
computational processes first of all assumes what is called ecological view of rational-
ity. This view emphasizes the relation between a cognitive system and environment
rather than a cognitive system and logic — since the structure of the natural envi-
ronment is ecological rather than logical (see Section 2.3.2 for further explanation of
the concept). In this sense, the situation determines the time constraint for a given
decision and the comprehensibility of the environment determines the amount of
memory (or computational/cognitive resources in general) needed for computation
and permissible level of information loss about its "true" nature. Balancing these
trade-offs allows a cognitive system to operate in an environment which is orders of
magnitude more complex than the system.

Information compression

Comprehending a system, understanding the environment, building a model of re-
ality, training a neural network, machine learning, statistical analysis, theory build-
ing, etc. — all these cognitive and computational activities can be seen as forms of
information compression. Conceptually, they are implementations of a general process
which takes an external complex, an unstructured and dynamic "corpus” of informa-
tion (e.g. input to a machine learning system or an environment of a sentient being)
and represents it in a much more concise form within a cognitive or computational
system which "owns" and "runs" the process. Two different general classes of infor-
mation compression processes can be distinguished: lossless and lossy compression.
They are best described in a somewhat formal manner for didactic reasons in Box 2.4,
but it should not prevent a view of the underlying principles in a broader sense.

Box 2.4: Lossy versus lossless information compression — definitions

Lossless information compression is the process which converts an arbitrary
long string of characters (or bits) S; into another, strictly shorter string
of characters (or bits) S while preserving all information of the original
string so that if the process is performed on S, in reverse, S is fully
reconstructed.

Lossy information compression is the process which also converts longer string
S1 into strictly shorter S, yet loses some [non consequential] informa-
tion so that if the process is applied in reverse to Sy, the string S3 is
obtained, which is similar, but not equivalent to 5;.
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The lossless information compression is well characterized by the measure of
Kolmogorov complexity which defines the theoretical upper bound on how much
a string can be compressed. More formally, the Kolmogorov complexity K (z) of a
finite object x is defined as the length of the shortest effective binary description of z,
where K (x) may be thought of as the length of the shortest computer program that
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prints z and then halts (Griinwald and Vitanyi, 2010). But suppose that the available
storage resources do not allow the storage of even the theoretically optimally com-
pressed string; the only option in such a case is the lossy information compression —
which produces a shorter string at the cost of losing part of the original information.
A lossy information compression involves a trade-off of how much information can
be allowed to be lost in order to fit the result into a pragmatically viable amount
of memory (or — produce a shorter string of a given length). It is trickier to define
since it does not have a single implicit criterion of optimality. In the case of a lossy
information compression, an optimality criterion (i.e. cost function in rate distortion
theory) becomes a variable of a system which performs the compression rather than
and external globally defined constraint or overarching principle. See page 30 for
deeper treatment of this conceptually important, while at first sight subtle, distinc-
tion.

In summary, the cognitive operation of understanding tries to solve the dilemma
about which part of the original information to keep and which part to discard (se-
lection for relevance) together with figuring out the best representation of retained
information (structural efficiency). The solution to the dilemma can be found only by
considering relevant distinctions about which information is important and which
is not in a given environmental situation for a given cognitive system in a given em-
bodiment. Yet, despite an important account of the concept of lossy information for
understanding the process of understanding, at least two aspects of an ecologically
embedded cognitive system are not covered by them.

e First, recall that ecological (and bounded) rationality involves two constraints
which both have to be taken into account: memory and time. The measure
of Kolmogorov complexity and rate-distortion theory takes into account only
memory (or channel capacity). However, there is a metric of complexity which
considers the time aspect when accounting for lossless information compres-
sion. This metric is called logical depth and is best understood with relation to
Kolmogorov complexity. Recall that Kolmogorov complexity K (x) of an object
x is the shortest program (or the shortest binary description) that can generate
x. Logical depth LD(x) by Bennett (1995) extends this metric by defining the
time needed to compute x using its shortest binary description K (z). Inter-
preted in the context of a cognitive system, the logical depth metric comes
closer to considering the time needed to make a decision given the capabilities
and knowledge of a cognitive system (in information theoretical terms — the
time needed to decompress a compressed string to its original form).

e Another aspect is what is called sequential dependencies or sequential effects in
perception and memory. In general terms this means that a local decision of a
cognitive system depends not only on the current stimulus or environmental
situation but also on the history of preceding events. Sequential effects are ubiqui-
tous in human and animal behaviour and are experimentally very well estab-
lished across a wide range of domains, including stimulus detection, percep-
tual identification, probability learning and decision making (Jones et al., 2013;
Sims, 2016). We believe that sequential effects constitute a major aspect of eco-
logical cognition, having broad conceptual implications on understanding the
phenomenon of becoming intelligent. In the context of lossy information com-
pression, sequential effects mean that the specific cost function for determining
a trade-off between information loss and the length of the compressed infor-
mation are influenced by the history of previous choices of such cost functions.
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It seems obvious that the behaviour of a cognitive system depends on its his-
tory, previous experiences and encountered environmental situations, which
are never the same for every cognitive system with a physical embodiment in
a complex world — human or animal alike. Likewise, the principle is widely
observed and applied in computer science and artificial intelligence where the
performance of machine learning systems depends largely on the data which
is used to train them. Yet this aspect is surprisingly often marginalized in sta-
tistical analyses as a random noise (Jones et al., 2013). The broad conceptual
treatment of sequential effects is developed further with the concept of pro-
gressive determination (Section 3.2.4).

Relation to open-ended intelligence

Let us now look at how the above concepts relate to the framework of freedom and
constraint in the light of how they may help to start conceiving a computationally
realisable mechanism of becoming intelligent. First, goal-directed intelligence can
be approached in terms of a lossy information compression with subjectively de-
fined criteria of optimality —i.e. with the goal determined outside the framework or
a priori given. It is not important in the sense that goal-directed intelligence consid-
ers the possibility of many goals in many environments — it still does not account
for the formation of goals themselves (apart from possibly inferring a hierarchy of
lower level goals from the overarching values — which are nevertheless given a pri-
ori). Conversely, the concept of open-ended intelligence encompasses the formation
of goals and, moreover, identities of agents which have these goals in the first place
as a single and inseparable process. Open-ended intelligence, of which goal-directed
intelligence is a special case, can be — with huge simplification for didactic reasons
— associated with framework of lossy information compression where the optimal-
ity criteria is determined within the framework and not a priori, i.e. "chosen" by the
system itself. If we imagine a working model of an intelligent agent based on the
concept of open-ended intelligence, the goals of such an agent would be variables of
the model, acquiring their values when executing an implementation of the model
but not defined exogenously.

An important note is due here. It is not possible to construct a direct implemen-
tation of open-ended intelligence. The goal of this work is nevertheless to show
the possibility of "reducing” the highly abstract philosophical framework into po-
tentially implementable ideas and thus inform the discourse about artificial gen-
eral intelligence (see Section 2.1). Performing this operation will necessarily involve
considering and introducing certain assumptions which are not warranted by the
philosophical framework, yet are needed for closing it (as in “closure”) just enough
to conceive a computational model and possibly an implementable architecture of
AGI based on it. For example, open-ended intelligence does not assume agents be-
fore actual interaction happens. Furthermore, agents with their identities are assem-
blages of interacting heterogeneous components at a lower scale (Weinbaum, 2013;
Weinbaum and Veitas, 2017b). In the philosophical framework this forms an infinite
regress where the identity of every agent emerges from interaction of lower level
agents. Yet, in order to conceive a computational architecture or a working model,
one has to posit the existence of elementary components, interaction of which gives
rise to further agencies and identities.

Based on the above we can start conceiving broad requirements for the cognitive
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architecture based on the open-ended intelligence framework. First, such architec-
ture should allow for the emergence of identities of higher order cognitive agents
from the interaction of lower level heterogeneous components. Second, the architec-
ture has to account for the [at least partial] ability of the emergent cognitive agents
to perform the selection for relevance operation by themselves.

2.2.4 Co-evolution of structure and function

When considered in general systemic terms, evolution of body, brain and mind is a
special case of evolution of assemblages of systemic components which give rise to
structural and functional hierarchies. Yet, as the preceding discussion has shown,
functional and structural hierarchical descriptions cannot be decoupled from each
other without losing at least some properties of a system being described. More-
over, emergence and development of structural and functional hierarchies within
a system implies interaction between them - evolving functions influence the de-
velopmental trajectory of structures, while evolving structures further influence the
development of functions. This principle later will be conceptualised in terms of the
model of progressive determination (Section 3.2.4). In this section we will discuss
selected interdisciplinary domains each of which are knowingly or unknowingly as-
sociated with this principle. I am confident that this list is very incomplete.

Evolutionary development

Evolutionary development (Evo Devo) is a branch of systems thinking that holds
the view that evolutionary processes on the one hand — which are stochastic, variety-
creating, divergent and contingently adaptive — and developmental processes on the
other — which produce convergent and systematically statistically predictable struc-
tures in a development cycle — operate together in a productive tension in order to
produce change in complex adaptive systems, including, but not limited to, living
systems and organisms (Smart, 2015, 2017). Generally systemic Evo Devo think-
ing grew out of evolutionary developmental biology (Evo-Devo) which, in its turn,
had its origins in the comparative embryology of the nineteenth century (Wallace,
2002). The major proposition and argument of evolutionary developmental biology
is that the development of embryos is shaped by their phylogenetic and ontogenetic
developmental trajectory no less than selective pressures or inductive interactions
within an embryo (Kalinka and Tomancak, 2012). A developmental trajectory itself
is shaped by many interactions — between individuals of the same species, different
species, species and their environment, etc. — which are very complex (Hall, 1999). In
other words, every and each phase of development is influenced by developmental
constraints, contingently emerging in the course of the previous phase, as well as the
myriad interactions inside and outside the boundary of an embryo - a developing
living and complex adaptive system.

Developmental and selective constraints

What are called developmental constraints represent a bias on the production of variant
phenotypes or a limitation on phenotypic variability caused by the structure, char-
acter, composition, or dynamics of the developing complex adaptive system (Smith
et al., 1985). Developmental constraints modify evolutionary future at every point
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in the process and therefore introduce a bias on what kind of developmental con-
straints further arise. Approached from the perspective of progressive determina-
tion of developmental constraints in an evolutionary process the “nurture versus
nature” debate loses at least some of its tension, because whatever constraints are
stored within an organism are the result of the interaction between an organism and
its environment at some stage of the evolutionary developmental process. This also
implies that the very boundary between an organism (whether in terms of its geno-
type or phenotype) and environment is determined during, inside, and because of
the process of evolutionary development rather then exogenously.

Niche construction

The crux of classical evolutionary frameworks of natural selection, such as the uni-
versal selection theory of Campbell (1997) (see Section 2.2.1) is the principle that
living systems evolve via blind variation of their features and selective retention
of those which lead to successful skills and behaviours in an environment. The
framework is based on two strong implicit and intertwined premises: (1) that the
environment is (at least largely) stable and (2) that developing organisms do not in-
fluence their environment. Yet if we realize that the environment of an evolving and
developing organism is composed of other evolving and developing organisms, it
becomes obvious that we are looking at interactive co-accommodation rather than
one way adaptation. Adaptation is such a powerful explanatory paradigm because
mutual influences among organisms and their assemblages are far from symmetric.
For example, the biosphere of a certain planet called Earth can be considered a liv-
ing and evolving organism, yet the time-scale of development of this biosphere is so
different from the time-scale of, say, a mammalian life form, that thinking in terms
of adaptation of the latter to the former is a good enough approximation of what
actually is a mutual interaction”.

The theory of niche construction — a term coined in the late 1980s by Odling-Smee
(1988) — addresses precisely this dynamic. Niche construction is the generalized pro-
cess where organisms actively modify their own and other organisms’ evolutionary
niches while simultaneously adapting to them. An evolutionary niche is defined as
the sum total of all the natural selection pressures to which a population is exposed
(Odling-Smee, Laland, and Feldman, 2013) — a concept closely associated with what
was called an "effective sensory space” of an organism on page 26.

The four key tenets of niche construction theory are (Laland, Matthews, and
Feldman, 2016):

i. organisms impose a systematic bias on the selection by modifying environ-
mental states in non-random ways — thus exerting influence over their own
evolution;

ii. parents influence the ecological niche of their offspring thus contributing to
parent-offspring similarity; this gives rise to ecological inheritance, operating be-
sides and together with genetic inheritance;

iii. acquired characters and by-products become evolutionarily significant by af-
fecting selective environments in systematic ways, and;

"Yet the global climate change is the evidence of how some mammalian forms can influence the
biosphere.
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iv. the complementarity of organisms and their environments (traditionally de-
scribed as "adaptation") can be achieved through evolution by niche construc-
tion.

An important aspect of the theory, which attracted a fair amount of criticism
from standard evolutionary theorists and a subsequent debate, is that niche con-
struction is not predictive, at least not in a strict sense — because it can lead to both
long term increase or decrease of fitness (Scott-Phillips et al., 2014). Developmen-
tal processes of niche construction channel selection along particular evolutionary
pathways which individuate during the process itself and, therefore, are at least
partially unpredictable. Indeed, niche construction theory emphasizes that "organ-
isms actively contribute toward both the construction and destruction of their own
and each other’s niches" (Odling-Smee, Laland, and Feldman, 2013) and that both
these directions should be taken into account. Precisely such a dynamic, yet in much
more abstract terms, is addressed within the philosophy of individuation and theory
of assemblages (see Section 3.2.2).

Besides biological evolution, niche construction theory has found a fertile ground
in psychology and cognitive sciences. Concepts like cultural niche and cognitive niche
relate to environmental aspects of non-biological origin, which have an important
influence on human evolutionary dynamics (Pinker, 2010). These aspects are clearly
shaped by human behaviours, and therefore some theories in cognitive science started
to focus on the active role of organisms in shaping their own cognitive niche — collec-
tively and individually. Approaches of situated, embodied, ecological, distributed,
extended and enactive cognition look beyond "what is inside a person’s head" to
"what a person’s head is inside of" and with which it forms a larger whole (Clark
and Chalmers, 1998; Di Paolo and De Jaegher, 2012; Stotz, 2010).

Developmental Systems Theory

Developmental systems theory (DST) is the general theoretical perspective on bio-
logical development, heredity and evolution — a framework for conducting scien-
tific research and understanding the broad significance of its results. DST tries to
disassemble dichotomies of "nature versus nurture", "genes versus environment",
"biology versus culture" by viewing development and evolution as a "process of con-
struction and reconstruction in which heterogeneous resources are contingently, but
more or less reliably reassembled for each life cycle" (Oyama, Griffiths, and Gray,
2001). DST understands organisms as autocatalytic systems — systems which are
able to self-organize and self-maintain not because they are adapted to the environ-
ment (Gontier, 2006), but due to inner mechanisms that enable them to self-maintain
a metastable homeostasis within boundaries of survival — sometimes despite the en-
vironment.

While DST grew out of the application of general systems theory to embryol-
ogy, epigenetics and developmental psychology (Griffiths and Tabery, 2013), it can
be considered a broad scientific paradigm, also referred to as developmental science. As
such, DST has been applied to developmental psychology, biological systems the-
ory, econometrics, systems science, psychometrics and more. Additionally, there
are strong conceptual links between DST and other theoretical models and research
methodologies, such as dynamical systems, artificial neural networks, connection-
ism, theoretical systems modelling, simulation modelling, system dynamics, social
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network analysis and agent-based modelling (Molenaar, Newell, and Lerner, 2013).

Oyama (2000), a major proponent of the DST paradigm, has systematically de-
veloped the idea that developmental information is actually produced during de-
velopment —i.e. information has an ontogeny and a developmental history (Griffiths and
Tabery, 2013). Building on this idea alone turns developmental science and DST
into a scientific paradigm deeply associated with the process philosophy and phi-
losophy of individuation. A major question of any scientific investigation, perhaps
mostly palpable in the context of evolutionary theory, is how a form arises. Oyama
(2000) distinguishes three avenues for approaching the question:

i. "Preformationist" attitude: there is a single causal source which defines a pri-
ori any form — a process that brings it into existence is merely mechanics of un-
foldment of already existing information. This perspective is embraced by the
view that genes or any single principle are responsible for organismic forms.

ii. "Interactionist" attitude — there are several causal sources which interact in a
complex way in a process of unfoldment of a form, the main question being
what these sources and their relative influences are. Similar to the "preforma-
tionist" attitude, information exists a priori, but in a distributed fashion. This
perspective is embraced by epigenetics.

iii. "Constructivist interactionism" — there are no prior causes or sources of infor-
mation preceding the developmental process which results in a form. Evolu-
tionary development is not a process that takes information as an input from
one or more sources and combines it into a form — information itself develops
during the process.

Obviously, DST embraces the "constructivist interactionist" attitude:

Developmental information [...] neither preexists its operations nor arises from ran-
dom disorder. It is neither necessary, in an ultimate sense, nor a function of pure
chance, though contingency and variation are crucial to its formation and its function.
Information is a difference that makes a difference (G. Bateson, 1972, p. 315), and
what it “does” or what it means is thus dependent on what is already in place and
what alternatives are being distinguished (ibid.).

Although never mentioned by Oyama (ibid.), the "constructivist interactionism"
attitude fits perfectly within Simondon’s theory of individuation (see Section 3.2),
which is much more general and not per se coupled with evolutionary biology. At the
core of the theory of individuation and the entire Simondonian ontology is the phi-
losophy of information as a new "systemic and not cybernetic" theorization (Barthélémy,
2015; Simondon, 2009).

Complexity science and self-organization of complex adaptive systems

Complexity is the paradigm within science and philosophy that studies general-
systemic principles of dynamic, evolving and developing (in terms of structure and
function) systems, i.e. complex adaptive systems (CAS). CAS are characterized by com-
plex patterns of behaviour which emerge from interactions among a large number
of component systems (agents) at different levels of organization (Ahmed, Elgaz-
zar, and Hegazi, 2005; Chan, 2001; Gell-Mann, 1994). Outcomes of a huge number
of interactions are most often unpredictable due to their non-linear character. Still,
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these interactions are able to spontaneously coordinate among each other — there-
fore, complex adaptive systems are said to self-organize instead of being organized or
designed.

Self-organization is the appearance of structure or pattern without an external
agent imposing it (Heylighen, 2001b). Importantly, self-organization is caused by a
certain amount of disorder and fluctuations in a system — as formulated by principles
of “order from noise” by Heinz von Foerster and “order from fluctuations” by Ilya
Prigogine (ibid.). These principles point to an important understanding that fluidity,
disorder, fluctuations and uncertainty are not undesirable side effects which should
be minimized, but actually are necessary for a complex adaptive system to evolve
and thrive. We can visualize a process of self-organization as a series of symmetry-
breaking bifurcations of a complex adaptive system operating "at the edge of order
and chaos":

One might expect that the problem of how nature generates pattern and form would
be to explain how symmetry arises out of chaos and disorder. But in fact, disorder is
much more symmetrical than order. If a beautiful bronze sculpture is melted down
into a uniform pool of liquid metal, its form and structure are lost—but it gains a great
deal of symmetry. Thus the question of the genesis of form is not how symmetry
arises out of disorder, but rather how the symmetry of disorder gets broken in deter-
minate ways to produce the characteristic asymmetries of the forms we find in nature
(Brender, 2013, p. 267).

Complexity science as a whole is still mostly a collection of exemplars, meth-
ods and metaphors of modelling complex adaptive systems without a generally
accepted definition (Heylighen, 2009a; Mitchell, 2006). Despite the difficulties in
formalizing the notion of complexity, CAS can be characterized by somewhat more
intuitive features, the major of which are:

i. Complexity must be situated in between order and chaos, sometimes called an
"edge of chaos". Since complex systems are neither regular or predictable, nor
random or chaotic, a number of theorists have proposed that the precarious
balance between order and chaos is precisely what is necessary for adaptation,
self-organization, and life to occur. Complex adaptive systems tend to evolve
spontaneously towards this balance.

ii. Complex systems consist of many components that are connected via their
dynamic interactions (not static or clearly definable links or relations). These
components can be said to be partly autonomous while at the same time partly
mutually dependent.

iii. Dynamic interactions among many heterogeneous components give rise to
emergence — behaviours and properties at the scale of the whole system which
cannot be described via reductionist analysis of properties and behaviours of
individual components.

This intuitively defined notion of the complex adaptive system encompasses a
broad array of natural and artificial systems and phenomena that can most generally
be described as "living" — including organisms, societies, brains, minds, intelligent
agents and their communities, languages, business organizations, nation states, eco-
systems and many more. They are best approached and studied via simulation mod-
elling techniques based on agent-based models, where many heterogeneous agents
form complex networks of interactions giving rise to the emergent properties of a
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whole system (Di Paolo, Rohde, and De Jaegher, 2008; Heylighen, 2009a; Komosin-
ski and Adamatzky, 2009; Weiss, 1999). This avenue is followed throughout this
thesis and detailed in Chapters 3 and 4 for the purpose of conceiving, modelling,
studying, understanding and possibly implementing an (artificial) complex, living
and intelligent system.

(Anti)fragility

A new and highly conductive perspective to complex adaptive systems is proposed
by Taleb (2012). This perspective characterizes a system by its long- and short-term
response to external perturbations. A number of common notions used to describe
the vulnerability of a system or "thing" are explained in the following way using this
perspective:

o Fragile applies to a system that disintegrates or loses its properties immedi-
ately when the energy of perturbation exceeds certain threshold. Taleb (ibid.)
gives the example of a porcelain cup, which breaks easily from contact with
another object or falling to the ground —i.e. exposure to a small perturbation.
Yet an engineered system which can withstand most of the perturbations but
breaks due to unusually high energy is also fragile, albeit with much higher
fragility threshold. Fragility is therefore a dynamic property of the system
which describes not only the threshold at which it breaks, but, most impor-
tantly, the dynamic response to perturbations that are smaller than the thresh-
old. Depending on how large the threshold is, systems may be considered
vulnerable or resistant (Johnson and Gheorghe, 2013).

e Robust or resilient systems are the ones which do not change when exposed
to a perturbation of smaller energy than their fragility threshold.

o Antifragile systems and things respond to the perturbations of lower level
than the fragility threshold by re-arranging their internal organisation in a
manner that makes their fragility threshold higher than before perturbation. There-
fore antifragile systems are said to "positively thrive on uncertainty". Many
complex adaptive systems and all living systems are antifragile.

Apart from adding the ecological perspective to the complex adaptive systems
and their relation to the world (Veitas and Weinbaum, 2015), the concept of an-
tifragility and its measures have been mathematically defined and applied for risk
management and financial institutions’ stress testing designs (Taleb et al., 2012; Taleb
and Douady, 2013).

Network science

Network science is a relatively new discipline which gained weight and popular-
ity at the beginning of the 21% century, mostly due to its applicability for studying
systems with millions or billions of interacting components — societies, the internet,
molecular, metabolic networks and more (Barabasi, 2013). Despite the lack of a gen-
erally accepted definition of CAS and complexity science, many real world complex
systems can very well be represented as networks. Recall that complex systems con-
sist of many elements connected via dynamic relations. Likewise, a network (or a
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graph) is a collection of nodes and links between them, which can be directed or
undirected, weighted or unweighted, typed or untyped.

Network science and, more specifically, adaptive networks, allow the structure
and dynamics of those systems to be abstracted from their immediate domain and in
this way to be studied mathematically (Sayama et al., 2013). This fact alone provides
a powerful avenue and a unified metaphor for modelling, simulating and under-
standing complex adaptive systems. Surprisingly many, if not all, real world sys-
tems can be modelled as network maps —a collection of objects (nodes, vertices) and
relations between them (links, edges) (Rodriguez and Neubauer, 2010). Networks
can be said to be skeletons of complex systems, which, however, have to be dressed
with dynamic interactions in order to model these systems faithfully (Barabasi and
Frangos, 2002). Agent-based models and multi-agent networks, broadly used for
modelling and simulating complex systems, can actually be mapped with chosen
precision to graph structures, where agents are represented as nodes and their inter-
actions as links (Heckel, Kurz, and Chattoe-Brown, 2017; Ren and Cao, 2011).

While network science is a new discipline, the concept of the graph was intro-
duced as early as the late 18" century. The beginning of graph theory in mathe-
matics is considered to be even earlier and started with Leonhard Euler’s paper on
the Seven Bridges of Konigsberg (1736). Graphs are one of the primary structures
in the study of discrete mathematics and have a number of mathematically proven
properties with well defined metrics. Yet the notion of the graph used in contem-
porary complex systems modelling and network science may considerably differ
from the notion commonly used in mathematics®. The reason is that real world
complex system networks, apart from being dynamic and adaptive, consist of many
heterogenous agents that interact in different ways or may have interactions of dif-
ferent types. For example, a social network may consist of friends and colleagues
who interact in the form of casual chats, beer evenings, or work assignments and
scientific discussions. Furthermore, the same two members of a social network can
engage in different types of interaction. These relationships are not grasped by the
simple graph structure commonly used in discrete mathematics.

Over the two centuries of graph theory history, many flavours of graph struc-
tures were invented in order to represent different properties and problem spaces
(see Rodriguez and Neubauer (2010) and Figure 2.7 for a wide, yet still incomplete
list of graph types). For our purposes it is enough to distinguish three types, repre-
senting extremes of the spectrum:

(1) Ordinary or simple graph is a tuple G = (V, E') where V is a set of homogeneous
nodes and £ C V x V is a set of edges that connect a pair of nodes (Kiveld
et al., 2014). This structure is the most studied in graph theory and the great
majority of mathematical proofs are based on it. Despite being the most ac-
cessible for mathematical representation and reasoning, the simple graph is
limited in its expressiveness and less suitable for representing interesting real
world systems.

(2) Multilayer graph is an extension to the simple graph developed in order to
represent and model more complex and closer to real world systems. In a
most general form a multilayer network is a quadruplet M = (Vis, En, C, L),
where:

SFrancis Heylighen (2016), private conversation.
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(a) V is a set of non-homogeneous nodes;
(b) Var CV x L1 x ... x Lqis a set of layers in which v € V' is present;

() Enm € Vi x Vi is the set of edges containing the pairs of possible combi-
nations of nodes and elementary layers;

(d) {L.}9_, is the set of elementary layers defined by d aspects.

The traditional metrics of simple graphs can be generalized to work with mul-
tilayer graphs, yet the generalization process is complex and involves advanced
mathematical tools, such as tensor algebra, generating functions and spectral
theory (Tomasini, 2015). Additionally, these graph structures are quite cum-
bersome and not very intuitive.

(3) Property graph can be seen as a further extension of multilayer network in that
it allows for an arbitrary number of edge and vertex labels (types) which can
therefore be heterogeneous in meaning. It also allows for an arbitrary number
of properties that can be attached to edges and vertices. Formally, a property
graph is defined as G = (V, E, A, 1), where:

(a) V is a set of non-homogenous nodes;
(b) E CV x V isaset of directed edges;
(c) edges are labelled (i.e. A : E — o; where o is a text label);

(d) properties (labels or types) are a map from elements (nodes and edges) to
keys and values (i.e. pu: (VE) x R — S; where (VE) are elements, R are
keys and S — values).

The property graph is the most expressive graph structure and by its use all
other graph types can be represented (see Figure 2.7b) ? This is one of the rea-
sons for our use of property graphs in the computational model of open-ended
distributed computing (see Chapters 4 and 5).

Hierarchical structures of systems, discussed in Section 2.2.2, are formally trees,
which are special forms of graphs that do not contain cycles and where every ver-
tex has only one outgoing link. Finding a decomposition (i.e. hierarchical structure)
of a nearly decomposable system amounts to finding a spanning tree on a graph
of this system, which is a well defined computational operation (Ruohonen, 2013).
Recall from discussion on page 17 that most of the physical systems are nearly de-
composable. Complex systems on the other hand, are non-decomposable in a strict
sense, yet their decomposition can be found if one accepts the cost of incurring an
arbitrary amount of information loss. We will explore this avenue in detail in Chap-
ters 4 and 5. For now it is important to establish the natural applicability of graph
structures (concretely the property graph) for dealing with the decomposability of
complex systems and therefore finding hierarchical and heterarchical structures in
them which, as was proposed earlier (see page 25), is the major operation of intelli-
gence.

“Including a directed labelled hyper-graph which is a comparably expressive graph structure, where
links can connect more than two vertices. Nevertheless, it is in principle possible to represent any
hyper-graph structure using property graph formalism, yet not the other way round. A labelled di-
rected hyper-edge can be represented as a special vertex which is then connected to other vertices via
simple binary edges. In property graph, every such binary edge could have a different label, yet this is
not possible to represent in a hyper-graph. On the other hand, certain structures can be represented in
a more compact way using hyper-graph formalism.



2.2. Evolution of body, brain and mind 39

weighted graph

add weight attribute
property graph
O O remove attributes remove aunbules no op,

vertex-labeled
26/@ Iabeled graph |<——no op—»> semanhc graph no op—~|directed graph
hype/
edge-labele remove edge labels remove edge labels

led
«—— knows ——<>—> make \abels URIs no op
created=2-01-09
i§ modified=2-11-09 L
Iti- graph remove directionality
A edge-attributed rdf graph
” z o -

remove loops, directionality,
and mumi\e edges

halteqpe
pejospun

name=emil
type=person

http://ex.com/123

vertex-attributed resource description framework "C' op—|undirected graph
(A) Possible formalisms that can be combined in order (B) Expressiveness of major graph types with weighted
to obtain different types of graph structure. property graph as the most expressive formalism that

can be morphed to other graph types via selecting out
certain properties.

FIGURE 2.7: Description and comparison of different graph types.
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Perceptual control theory

Perceptual control theory (PCT) is a theory of behaviour which was conceived in the
1950s by Powers, Clark, and McFarland (1960) and is still in active development. It
has been applied to diverse fields, including animal behaviour, neuroscience, soci-
ology, psychology, psychotherapy, robotics, human-machine interaction and more'°.

PCT differs from other theories in its basic assumption about the nature of behaviour
itself and is sometimes considered the "third grand theory of behaviour" along the
stimulus-response model of behaviourism and information processing model of cog-
nitive psychology. Yet for a long time it was overshadowed by behaviourism and
cognitive psychology, to which it was opposed, and only started to re-emerge thanks
to the rise of self-regulation theory (Mansell and Marken, 2015).

The fundamental idea of PCT was known to Aristotle (and probably much ear-
lier) and well expressed by William James as: people act so as to bring conditions they
desire — to perceive their world as they wish it to be (Taylor, 1999). Yet this idea gained the
backing of technical knowledge and system theory only after the introduction of the
notion of cybernetics by Wiener (1950) and subsequent developments in the field of
engineered control systems. The core tenet of PCT is that all behaviour is control of per-
ception. Control in the strictly engineering sense is defined as bringing a perception
of some state to a desired (reference or goal) to which it is compared and maintaining
it there (Taylor, 1999). PCT derives quite a few fundamental principles that make it
stand out from control theory in engineering as well as other theories of behaviour.
We here briefly describe a few aspects which are most relevant to the present work
without trying to be exhaustive or complete in covering this 70-year-long research
programme (Powers, 2016).

The core of PCT is well described in terms of a “closed-loop’ cybernetic system yet
contrasting it with the traditional models of cybernetic control. The first difference
lies in that while traditional models of system control assume that a system controls
its output, PCT assumes that a system controls its input — which literally follows from

10See e.g. http:/ /www.pctresources.com/index.html
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its core tenet that behaviour is control of perception, and perception is obviously an
input.
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FIGURE 2.8: A general form of a feedback control system (adapted
from (Powers, Clark, and McFarland, 1960, p. 76)). Blue lines in-
dicate usually perceived environmental boundaries that separate an
individual feedback loop from its environment — a relationship that is
often simplified in order to make things more "'understandable’.

At first glance, Figure 2.8 looks similar to the classical depiction of a control loop,
but there is a key difference. Internally (between blue lines in the figure), a feedback
loop consists of three functions: (1) a feedback function f = F(v.) which converts the
environmental variables v, to the feedback signal f to be further considered by the
system; (2) a comparator function e = C(f,r) which compares the feedback signal
f ("perception") with a reference value r ("desire") and produces an error signal e.
Usually the comparator function is considered a form of subtraction between f and
r, but this need not be the case in general; (3) an output function o = O(e) which
conceives some sort of external action by the system. Classically, a control loop tries
to correlate the output signal with the environmental variables in order to mini-
mize error. In PCT, the nature of correlation is modulated by the reference signal .
Furthermore, PCT greatly relaxes the "freedom" of a control loop to minimize e by
enabling the adjustment of all three functions —i.e. being able to perceive, compare
and correct via environmental loop variables that maximize its perceptual control.
In this sense, the seeming "adaptation" of negative feedback systems to environmen-
tal signals is only a side effect of being persistent in this environment — the goal of
such correlation is not in any way directly represented in a system. I believe that
this insight carries great importance when considering living cognitive rather than
engineered systems.

The second crucial difference is that in the PCT control model the goal specifica-
tion of the system can be said to be set in and by the system, while in the traditional
model it is set exogenously (Mansell and Marken, 2015). Formally, goal specification
is the reference value of a chosen control variable — so, for example, if a system is
a thermostat, its goal specification is the difference between perceived temperature
and desired temperature levels. When the goal is specified exogenously, a system
can only aim at its perceptual goal by somehow changing the variable itself (actual
temperature in case of thermostat). When the goal is specified endogenously, a sys-
tem can aim for the same perceptual goal also by changing the perception or desired
level of a variable without trying to control the variable itself.

The above may seem to make little sense in the context of control systems which
are engineered specifically with the purpose of controlling an exogenously set vari-
able (as it is in the case of thermostat — probably nobody wants a device that decides
by itself how to perceive and react to the temperature in a room). Yet in the context
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FIGURE 2.9: A functional comparison between a thermostat and a
person, showing the difference between them in terms of the source
of the desires that animate them. Adapted from Powers (2016, p. 284).

of an autopoietic and self-regulating system with the purpose of regulating a precar-
ious balance between order and chaos in its own behaviour, it does not really matter
how it is done as long as this balance is kept and the system manages to persist
in a given environment. In this sense, PCT operationalizes into a falsifiable theory
the principle that the driving force behind living cognitive systems’ behaviour is to
perceive the world the way they wish it to be.

The third difference in PCT from traditional theories of cybernetic control is
the emphasis on interactions between multiple levels of negative feedback units
("closed-loops" of Figure 2.8) —leading to understanding that (1) these loops can still
be "open" to influences from higher levels and (2) that the process driving their "in-
dividual" closure is a dynamic property of the whole system — consisting of multiple
hierarchical levels of feedback control subsystems (see Figure 2.10).

Multiple levels of feedback control loops in PCT are almost equivalent to the con-
cept of nested hierarchical levels of test-operate-test-exit loops of Miller, Galanter,
and Pribram (1960), described on page 20. Yet PCT goes further than stacking feed-
back control units on top of each other and connecting their inputs and outputs. It
attempts to describe complex relationships between orders, which are "responsible"
for the individual formations of "closed-loops".

This is done by introducing an additional recording function R to each individual
feedback subsystem, resulting in the functional description represented in Figure
2.11. In human terms, the recording function is responsible for memory and imagi-
nation, which are fundamental for the completion of the PCT model. The recording
function can be approximated to something like f,. = R(f, ) (using the terms intro-
duced above), where f is a regular (current) feedback signal, f, —a recorded feedback
signal and r is a reference value. The recording function has the property of return-
ing the memory of a signal experienced by the system in the past when triggered
by circumstances considered external to the local system. The bottom line is that
this extension (1) allows the system to have some degree of non-trivial "choice" be-
tween the current f or recorded f, feedback signal as an input to the comparator.
Also, (2) it relates levels of feedback control units by positing that reference values —
signals r from higher order systems — no longer serve directly, but only through stim-
ulating memory-trace in recording function. The comparator function is indifferent
as to whether it receives an "imagined" memory or the currently perceived feedback
signal. This property allows the system, in human terms, to "dream", "hallucinate",
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FIGURE 2.10: Interconnections in a control system hierarchy.
Adapted from McClelland (1994, p. 470).

"fantasize" and to "plan" actions mentally. This kind of "choice" is closely related to
what was earlier presented in more abstract terms as the selection for relevance aspect
of model building (see page 25).

Remarkably, the epistemology of PCT, as well as the theory of autopoiesis, is
constructivist: an organism’s knowledge should not be seen as an objective reflec-
tion of outside reality, but as a subjective construction, intended to help find a way
to reconcile the system’s overall goal of maintaining its organization with the dif-
ferent outside perturbations that may endanger that goal (Heylighen, 2002a). The
hierarchically organized system of multiple orders of feedback control sub-systems
(called the negentropy system or N-system in PCT) is capable of learning via coming
up with stable organizations of relations between orders. In terms of evolution-
ary theory, the learning process can be understood as a mechanism of internalizing
vicarious selectors into a system (see Section 2.2.1). Yet such a system has a fluid
structure which becomes a stable feedback system "not because there is anything
that "tells” the system to stop reorganizing, but because the lower-order systems and
the environment are such that this particular organization produces behavior which
results in a lessening of the intrinsic error, thus slowing or halting the reorganization
process” (Powers, Clark, and McFarland, 1960, p. 82).

Furthermore, PCT defines a system as a set of functions interrelated in a special
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FIGURE 2.11: Relations among orders / strata of the system. Adapted
from Powers, Clark, and McFarland (1960, p. 83).

way. An environment of a system can then be defined as all those functions and
variables not included in a set chosen to define a system (Mansell and Marken, 2015).
A system interacts with an environment via its boundary, defined as input boundary
(i.e. all "inward" functions which relate environmental variables to system variables)
and output boundary (i.e. all "outward" functions which relate system variables to
environmental variables). Note that this definition depends on the choice of the
boundary, which is at least partially observer dependent.

Last but not least, perceptual control theory considers the collective control of
individual feedback subsystems to be the main mode of operation, as can be seen
from Figures 2.11 and 2.10. A higher order subsystem receives environmental sig-
nals v, from more than one lower order subsystem and a lower order subsystem
receives reference signals r from more than one higher order subsystem. One can
further imagine lateral relations between subsystems of the same order in the spirit
of the hierarchical temporal memory / cortical learning algorithm of Hawkins and
Blakeslee (2005). Thus defined, collective control further emphasizes and allows one
to appreciate the fuzzy nature of system-environment boundaries, and, moreover,
the boundaries among hierarchical levels within a system (conceptualized as scales
of individuation in the Section 3.3.2). The PCT model of collective control has inspired
a body of research and validation attempts in the area of social systems (Busseniers,
2018; McClelland, 2006).

Stigmergy

The concept of stigmergy was originally introduced in order to account for the com-
plex coordination observable in biological insect societies (Grassé, 1959), but has
since been generalized into a universal mechanism of decentralized coordination
in societies of interacting individuals (Heylighen, 2015b, 2016) and even a proba-
ble counterpart of the natural selection process (Vidal and Dick, 2014) in evolution.
As defined by Heylighen (2016), “stigmergy is an indirect, mediated mechanism of
coordination between actions, in which the trace of an action left on a medium stim-
ulates the performance of a subsequent action”.

More concretely, stigmergy is a form of indirect coordination between indepen-
dent actors via a shared medium, where some actors leave a trace that is picked up
and acted upon by other actors and in such manner guides their performance. It is
probably the simplest yet most effective form of coordination of complex systems
- so effective that it gives rise to the phenomenon of collective intelligence famously
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observed in large colonies of eusocial insects, where a group is observably more in-
telligent than any single individual in it. A key requirement for the stigmergy to
occur is the presence of the shared medium — a regulatory structure external to the
agents that promotes coordination (Heylighen, 2011, p. 33), where signals can be
independently written and read by the participants of the system.

The concept of stigmergy has been applied for understanding coordination in
colonies of simple organisms, molecular interactions, biological and robotic swarmes,
cognition and many more domains. Furthermore, stigmergy attracted the attention
of computer scientists when it was noticed that, by using it, eusocial insects col-
lectively and without prior knowledge actually solve complex computational prob-
lems, such as the travelling salesman problem, which is an NP-hard combinatorial
optimization problem (Stiitzle and Dorigo, 1999). This phenomenon has been called
by computer scientists stigmergic optimization and stigmergic computation and is ex-
tensively researched (Abraham, Vitorino, and Grosnan, 2006; Pintea, 2014) from the
computational point of view. This perspective is most interesting in the context of
this work as it is instrumental for the computational framework of open-ended in-
telligence developed in Chapters 4 and 5. For the conceptual treatment of stigmergy
as well as its applications in other domains see Gloag, Turnbull, and Whitchurch
(2015), Heylighen (2015b, 2016), Marsh and Onof (2008), and Weinbaum (2018).

On the most abstract level, computation is the process of manipulating data. Tra-
ditionally computation has been associated with the concept of the Turing machine
(Turing, 1937) which describes it in terms of two abstract components: process and
memory. According to Turing’s model, a process reads data from a certain place in
the memory, manipulates it according to provided instructions and writes it to a cer-
tain place in the memory. By combining different instructions and carefully ordering
places (addresses) of the memory where the data is read /written, any kind of data
manipulation, no matter how simple or complicated, can be achieved. Stigmergic
computation can also be described along these lines — it is composed of more than
one (typically a great number of) individual instructions/processes ("ants") which
read and write to a shared memory ("environment"). The most important differ-
ence between these two models is that in the case of stigmergy, instructions are not
strictly ordered and places / addresses in memory are not strictly defined — they
"self-organize" during the computational process itself.

It seems perfectly appropriate to attempt to explain the emergence of collective
control within the hierarchy of elementary feedback units of perceptual control the-
ory (see page 39) in terms of stigmergic computation and, first and foremost, the
emergence of hierarchy (see Section 2.2.3) — which, after all, is just a pattern of con-
nectivity. The concept of stigmergic computing will be developed further in Section
4.5.

Note, however, that shared memory as an external logical or physical entity is
not needed for stigmergic computation to occur. The function of shared memory
is the ability to pass information indirectly (and perhaps probabilistically) to "un-
known" receivers — whoever is passing by and is willing to pick up the information
left in the medium. This kind of communication is usually contrasted with direct
communication, where each process sends the information to one or a few known
recipients. Yet the same effect can be achieved by broadcasting information to any
recipient which is capable of receiving it, for example via the mechanism of spreading
activation (see Section 2.3.1).
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2.2.5 Guided self-organization

Guided self-organization is the multidisciplinary area of inquiry aimed at finding
ways to guide the processes that seemingly spontaneously self-organise towards desirable
outcomes. In simple terms, it is a field of ongoing research into engineering the
evolutionary development process resulting in defined complex adaptive systems
(in a functional or structural manner). It is considered among the most complex
engineering tasks (Prokopenko, 2009, 2014). The research within the domain of
guided self-organization draws on methods from computational, physical, biolog-
ical domains, information theory, theory of computation, dynamical systems, ma-
chine learning, evolutionary biology, artificial life, statistical mechanics, thermody-
namics, and graph theory — and therefore touches many aspects of the open-ended
decentralized computing concept developed by this work. We build on these paral-
lels along the way:.

Based on what we covered so far, we can formulate the following principles,
which will guide the design of the computational model in Chapters 4 and 5:

e The emergence of collective control is equivalent to the stabilization of com-
munication patterns among independent elementary units;

o Together these patterns define a structure which gives rise to a function of the
overall system and constrains emergence of further structures and functions;

e By that, the progressive determination of structure and function is achieved in
an evolutionary developmental way.

e Such systems cannot be directly controlled, but guided via exerting influence
on a progressive determination process, which is a complex engineering task
and the research domain.

2.3 Insights from cognitive and neuro science

2.3.1 Spreading activation

Spreading activation is the mechanism of information propagation in a network, e.g.
cascades of neural action potentials in a biological brain. The term was introduced
in the 1960s by Ross Quillian in the context of human semantic processing and com-
puter simulations of memory search and comprehension of language (M. Collins
and Loftus, 1975). Since then it has become the main algorithm for working with
network data structures: associative, biological, artificial neural networks as well as
semantic networks and graphs (Baronchelli et al., 2013; Gouws, Rooyen, and Engel-
brecht, 2010; Heylighen, 2008; Heylighen, 2001a, 2002a; Heylighen and Bollen, 1996;
Rodriguez, Gayo, and Pablos, 2013).

In simple terms, the mechanism works by activating one or more nodes in a net-
work and then propagating this activation to neighbouring nodes via associative or
semantic links. The quantity of activation (or action potential in biological neural
networks) is modulated by the strength of links between nodes or semantic parame-
ters in case of semantic networks (Heylighen, 2009b; Rodriguez, 2011). When a node
gets activation from several links, the activations are summed and the sum is prop-
agated further. In this way a mechanism can learn the structure of a network, or a
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particular aspect of it. Dynamic networks can also be modelled using this algorithm
by allowing activations to change link strengths (in biological neural networks) or
semantic properties of nodes and links (in semantic networks and graphs). Impor-
tantly, the algorithm naturally allows for parallel and distributed processing.

2.3.2 Ecological rationality

Ecological rationality is a concept introduced by Gigerenzer (2008) which frames ra-
tionality as a match between mind and environment rather than an ideal human
reasoning and probabilistic inference. The concept reflects and builds on the view
that "intelligent behaviour in the world comes about by exploiting reliable struc-
ture in the world — and hence, some of intelligence is in the world itself" (Todd and
Gigerenzer, 2012). Simon (1990) framed a similar principle in terms of the image of
scissors, saying that the rational behaviour of all physical symbol systems is shaped
by a pair of scissors whose two blades are the structure of task environments and
the computational capabilities of the system — and both have to be taken into ac-
count when envisioning an embodied intelligent being. The perspective of evolu-
tionary epistemology (Section 2.2.1) is even more radical, basically claiming that all
knowledge is nothing else than internalization of the "intelligence of the world".

Cognitive psychology therefore can be approached as the study of computational
capabilities of a certain embodiment of intelligence facing diverse tasks. These ca-
pabilities may involve logical reasoning, statistical sampling, probabilistic inference
and heuristics whereas none of these modes fit the ecological purpose automatically
—i.e. they should be dynamically selected depending on the context. Ecological ra-
tionality emphasizes the intractable structure of the world and importance of heuris-
tics for interacting with it. Heuristics deal with uncertainty and limits of computa-
tional capacity by "smartly" ignoring part of the information about the environment
(see the principle of selection for relevance on page 25). It does not try to achieve op-
timal results, as do optimization procedures or algorithms, but rather satisfy — i.e.
achieve "good enough" results.

By emphasizing relations with an environment, ecological rationality blurs the
borderline between perception and cognition. Importantly, it allows cognition to
be viewed in terms of non-deterministic and context-dependent computational pro-
cesses (see Section 4.2.3). Furthermore, it blurs the boundary between "system" and
its "environment" by positing that the intelligence and cognitive capabilities of an
agent cannot be analysed or understood without reference to its environment. A
philosophical system that addresses these issues in a rigorous way and thus pro-
vides a strong conceptual background is the theory of individuation discussed in
Section 3.2.

2.3.3 Rate distortion theory

A framework that proposes practically applicable formalization and definition of
important aspects of ecological rationality in mathematical terms is the rate distor-
tion theory (Berger, 1971) — a major branch of information theory that provides the-
oretical foundations for lossy data compression. The relevance and value of the
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rate-distortion theory is that, as Sims (2016, p. 13) formulates, it “combines the cen-
tral elements of both information theory and decision theory, and is uniquely situ-
ated for explaining biological computation as a principled, but capacity-limited sys-
tem”. It provides an excellent framework for discussing the fundamental trade-off
between comprehensibility and information loss (discussed on page 27). Moreover,
rate distortion theory supports the conceptual approach to the general process of
understanding as a lossy information compression (see page 28) — an approach that I
consider one of the major principles for conceiving a synthetic cognitive system.

Perception is a process of extracting meaning from the noisy and uncertain en-
vironmental signals (i.e. sensory space) and choosing which ones to transmit to a
decision-making process and which ones to discard. Rate-distortion theory looks to
perception as a communication channel of limited capacity which necessarily im-
plies loss of information in cases where the input rate is larger than channel capacity
(which is always the case with the natural environment). Therefore, the goal of
perception cannot be the perfect transmission, storage, or reproduction of afferent
signals, but rather the minimization of some cost function subject to constraints on
available capacity. The rate-distortion theory describes and formalizes this trade-off
by quantifying how the minimum necessary channel capacity depends on perfor-
mance requirements in terms of information transmission (ibid.).

The rate-distortion curve (Figure 2.12a) defines the ideal boundary performance
of a perception-memory system (as an information transmission channel or informa-
tion compression system) in terms of its structural efficiency given the goal (i.e. cost
function) of the system. The ideal boundary performance is the theoretically maxi-
mal information transmission rate given the probability of error in the transmission
channel (i.e. distortion). Considering the ecological nature of intelligence, it may
be more important for the decisions of the perceptual-cognitive system to be "good
enough" in a specific situation than "efficient" or "optimal". The crucial distinction is
that the "good enough" decision is subject not only to the internal neural architecture
of the embodiment in question, and the costs and constraints it imposes, but also to
the goals of the agent it represents and the environmental situation at the moment
of the decision. Rate-distortion theory represents the perceptual goal of a system in
terms of a cost function which formalizes the outcome of the selection for relevance
aspect of modelling — depending on the chosen cost function, the ideal boundary
performance defined by rate-distortion theory may differ (see Figure 2.12b).

When applied to human cognition, rate-distortion theory describes three critical
components that limit human perceptual memory: (1) information-theoretic limits
on memory capacity, (2) mismatches between ecological statistics and implicit statis-
tical learning, and (3) mismatches between task-defined and implicit cost functions.
Importantly, it explicitly considers the effect of a system’s goal on the measure of its
performance — allowing for thinking in terms of multiple goals without presuppos-
ing a single overarching "objective" one. The aspect that the theory does not encom-
pass, however, is the mechanism of choosing a concrete goal in a concrete situation
—1i.e. selection for relevance aspect of modelling.
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2.3.4 Coherence

As defined by Thagard (2002, p. 34), coherence can be understood in terms of maxi-
mal satisfaction of multiple constraints in a system or theory. A system is comprised
from a set of elements or representations, such as concepts, propositions, perceptions,
images, goals, actions, etc. Elements are related to each other with the relations of co-
herence; if two elements cohere (i.e. explain, deduce, facilitate, associate, etc. with
each other), then there is a positive constraint between them; if elements incohere
(i.e. are inconsistent, incompatible or negatively associated), then there is a negative
constraint between them. The degree of coherence is obtained by dividing a set of el-
ements and constraints into accepted and rejected subsets. A positive constraint can
be satisfied either by accepting both elements or rejecting both elements. A negative
constraint can be satisfied only by accepting one element and rejecting the other.

Two notes are of relevance here. First, the coherence problem has clear relations
to the maximum satisfiability problem (MAX-SAT) in computer science and could
be considered a computational problem, albeit requiring a proper representation.
Second, the coherence problem naturally lends itself to being represented in a graph
form (i.e. in terms of elements and their relations) — an important property which
we will expand on later (see Section 5.2 Graph computing on page 126).

While the coherence problem as defined by Thagard allows for a fuzzy or con-
tinuous degree of coherence (e.g. calculated as the proportion of satisfied constraints
with respect to all constraints in the system), it allows only for discrete constraints.
Yet much more realistic would be a system with fuzzy constraints ranging from
fully positive to fully negative. It may be that the difference of using discrete or
fuzzy constraints in solving coherence problems is precisely the difference between
symbolic and sub-symbolic processing and computing. The insurmountable gap be-
tween symbolic and sub-symbolic cognition stems from the fact that all perception
is sub-symbolic, but in order to apply reasoning to it, the fuzzy sub-symbolic rela-
tions have to be converted into discrete and unambiguous ones. During this process,
some information about the system is necessarily lost.
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2.3.5 Integrated information

Integrated information is the central concept of the mathematical theory of con-
sciousness introduced by the neuroscientist Tononi (2004). The thesis of integrated
information theory (IIT) is that the degree of consciousness of a system is correlated
to the measure of integrated information ®. Intuitively, ® measures how much infor-
mation is generated in the system by the virtue of being an irreducible whole rather
than a collection of independent components. The basic idea is to estimate how
much information is generated by the components when considered independently
and compare it to the amount of information generated by the system as a whole
(Tononi, 2008). This can be understood as a measure of "non-decomposability" or
"irreducibility" of a system to its parts. Note from this definition that information in-
tegration is actually a measure of complexity of a complex adaptive system composed
of interacting heterogeneous components.

Conceptually, IIT aligns well with the concept of open-ended intelligence and
individuation of intelligence (Weinbaum, 2018; Weinbaum and Veitas, 2017a; Wein-
baum and Veitas, 2017b) in that the information integration measure can be used to
account for the "degree of individuation" of the system (the concept will be explained
later on page 60 in terms of distinction between preindividual, fluid individual and
fixed individual). Concretely, IIT uses the notion of intrinsic information, which is de-
fined as "a difference that makes a difference” from the perspective of the system
itself, i.e. without relying on an external observer. In that it differs from Shannon’s
notion of extrinsic information (Oizumi, Albantakis, and Tononi, 2014) and, further-
more, allows for information to individuate during the development of a system,
which is a fundamental aspect of the developmental systems theory (see page 33).

2.3.6 Human cognitive development

The concept of cognitive development has been defined in the field of psychology as
“the emergence of the ability to understand the world” (Schacter, Gilbert, and Weg-
ner, 2010, p. 447). Traditionally it is mostly associated with the child development
stages proposed by Jean Piaget but can be also applied to describe sense-making
by an individual throughout its whole lifetime as proposed by Kegan (1982). Piaget
originally contended that children pass through four eras of development - sensimo-
tor, prelogical, concrete operational, and formal operational - which can be further
subdivided into stages and substages (Kohlberg and Gilligan, 1971; Piaget, 2004).
Kegan also propounded that Piaget’s and some later cognitive development theo-
ries generally describe recursive subject and object relationships when the subject of
a previous stage becomes an object in the next stage, to which he refers as an "evo-
lution of meaning". Subject in this context means whatever is perceived as part of
self while object is part of the environment. Therefore cognitive development can be
understood as an ongoing balancing of subject — object relations and interactions across the
emerging boundary of an individual towards increasing cognitive complexity (Weinbaum
and Veitas, 2017a). This recursive process progressively defines a boundary of an in-
dividual - a psychic differentiation of self from the other (Kegan, 1982, p. 24) which
constitutes the differentiation between agent and environment.

For further clarification of our understanding of cognitive development as indi-
viduation and the benefits of such an approach, let us examine a schema of Era I of
early cognitive development as formulated by Piaget (Table 2.1). It is clear that every
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Stage 1. | Reflex action.

Stage 2. | Coordination of reflexes and sensorimotor repetition (primary circular
reaction).

Stage 3. | Activities to make interesting events in the environment reappear (sec-
ondary circular reaction).

Stage 4. | Means/ ends behavior and search for absent objects.

Stage 5. | Experimental search for new means (tertiary circular reaction).

Stage 6. | Use of imagery in insightful invention of new means and in recall of
absent objects and events.

TABLE 2.1: Era I (age 0-2): The era of sensorimotor intelligence.
Adapted from Kohlberg and Gilligan (1971, p. 1063)

subsequent stage builds upon the previous one and together they seem to form a hi-
erarchy. It seems, however, that cognitive development theorists and practitioners,
including Piaget, agree that stages in cognitive development overlap, occur in par-
allel or get manifested later in the maturation process. Therefore we can approach
the process of cognitive development as both a sequence of stages and a continuum.
In Chapter 3 we will see that a developmental continuum punctuated by distinct
stages is also supported by understanding cognitive development as a case of indi-
viduation. The appearance of stages of cognitive development seems to be better
understood in terms of dynamic products of individuation or "evolutionary truces",
as Kegan calls them, rather than pre-defined "milestones".

2.3.7 Enaction

The enactive approach treats cognition as the adaptive process of interaction be-
tween an agent and its environment. Actually, the distinction between agent and
environment is constituted by the interactions themselves. A cognitive system can
be seen as a complex adaptive system which is an organized network of interactive
sub-processes (De Jaegher and Di Paolo, 2007, p. 3) that together realize a network
of objects and their relations as they are perceived in the world.

A cognitive system cannot form itself separately from the matrix of interactions
with other entities within a larger population. In terms of social psychology this
principle is informed by a perspective that minds exist only as social products (Sum-
mers, 1994, p. 328). Relationships and bonds with other entities of the population
are part of the cognitive system and thus define its identity on equal terms with
internal relationships and structures. Therefore, the mental states of an individual
are not established prior to the interaction, but are shaped, or even created, during
its dynamics. Di Paolo and De Jaegher (2012) describe these dynamics as participa-
tory sense-making and propose the interactive brain hypothesis which "describes an
extreme possibility, namely that all social brain mechanisms depend on interactive
elements either developmentally or in the present, even in situations where there is
no interaction" (ibid., p. 5).

Also, in some forms of psychotherapeutic theory and practice (e.g. Gestalt and
the interpersonal approach to psychoanalysis), certain interactions or situations which
are normally considered external to an individual are actually an integral part of its
sense-making processes. An individual enacts itself in its social milieu rather than
merely using internal representations, plans or theories of mind or even perceptual
routines existing prior to the interaction.
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Edelman and Mountcastle (1982) define "world inputs" and "self-inputs" to dif-
ferentiate between interactions across and within the boundary of a neuronal group.
Weinbaum and Veitas (2017a) extend this principle from the context of neuronal
groups to networks of cognitive agents. An individual is defined as a totality of both
types of interactions while the proportions of them may differ at different periods
(see Section 3.3.3). Likewise, Brender (2013) relates cognition to bodily movement
in an environment: "we cannot conceive of a difference in nature except by refer-
ence (implicit or explicit) to a bodily movement that would reveal this difference.
[...] Thus we cannot give an account of nature that is not an embodied account, that
does not take up the point of view of a moving body situated within the nature it
describes".

2.3.8 Sense-making

Sense-making is one of the components of the enactive approach to mind and cogni-
tion (De Jaegher and Di Paolo, 2007). Weinbaum and Veitas (2017a) frame cognition
as a process of individuation within the scope of what is referred to by Piaget (2004)
as "genetic epistemology". A psychologically-oriented definition of sense-making is
the following: sensemaking is a motivated, continuous effort to understand connections
(which can be among people, places, and events) in order to anticipate their trajectories and
act effectively in relation to them (Klein, Moon, and Hoffman, 2006, p. 3). From the per-
spective of dynamics of the cognitive system, sense-making is a continuous effort to
form a network of connections and objects as they are perceived in the world. The
enactive approach implies that cognition and sense-making are seen not as some-
thing that happens inside clearly defined boundaries of the cognitive system but
as the product of interactions (McGann, 2008) across emerging boundaries: “sense-
making establishes a perspective on the world with its own normativity, which is
a counterpart of the agent being a center of activity in the world” (De Jaegher and
Di Paolo, 2007, p. 4). Or, as Brender (2013) puts it, "the organism and its world grow
together dialectically, each driving the other to become more articulated and deter-
minate through its own increasing determinacy. This is the growth of sense: the
self-articulating field of differences that make a difference to the organism" (ibid., p.
271).

Sense-making has the following notable aspects:

o Identity and identification. A prior notion of an entity ‘which makes sense’
seems to be needed, but in the framework of open-ended intelligence it is not
the case: the identity of cognitive agents is created during the process.

e Enaction. According to Clark (2012) perception is an action where an agent
produces a stream of expectations and then corrects its own model according
to incoming information. Therefore the primary component of sense-making
is an action: an agent acts upon the environment, catches the "reflection" or
response and updates the internal representation of it.

o Reflexive. Sense-making is a two-way interaction between the individual and
its environment across the boundary being created during the same process:
any agent’s examination, modeling and action "bends" the environment and
affects the perception of and further decisions by that same agent. The prop-
erty of reflexivity of the system captures these mutual influences of networks
of processes across the boundary of an agent.
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e Participatory aspect. As noted by Di Paolo and De Jaegher (2012), “mental
states that ‘do” the understanding and the ones to be understood are not fully
independent or established, but are instead affected, negotiated, and even cre-
ated as a result of interaction dynamics” (ibid., p. 4). They describe the set of
possibilities arising from these dynamics with the notion of participatory sense-
making, emphasizing its social aspect. In Section 3.3.2 we extend the social
aspect of sense-making across multiple scales with the general framework of
individuation of interacting population of elements.

2.3.9 A worldview

The essence of the sense-making process is already encoded in the word itself — it is
an active "making" of a "sense" or "meaning" by an observer — a cognitive agent. The
concept does not overlook the fact that sense-making is based on extracting informa-
tion about observable patterns in the system (the world, self and others) being per-
ceived. But, at the same time, it emphasizes that it is the observer who decides what
the significant patterns are to extract from the data about a system or phenomenon.
Sense-making is rooted in the enactive approach to cognition (Section 2.3.7) which
puts the concept in a larger context, first of all, entailing the individuation of the
very agent which performs sense-making!!-12,

The process of sense-making begets a worldview. Importantly, the relationship of
the sense-making and a worldview is a reflexive one — the worldview of an observer
determines significances which then influence the sense-making process of the same
observer. The concept of a worldview is a rich and multi-dimensional one (see Vi-
dal (2008) and Vidal and Dick (2014) for an in-depth discussion and references). It
can be understood as a Gestalt perception — a unique and integrated cognitive structure
— held individually or collectively in relation to self, others, society, and the cosmos at large
(Markley and Harman, 1981; Veitas and Weinbaum, 2015). With respect to the social
system we live in, each worldview includes our aspirations, the views on "natu-
ral tendencies" and "trends" of the system, related possibilities for the future, and
approaches to the appropriate modes of social governance. Each of these aspects is
based on a combination of sense-making perspectives which may be overlapping, in-
compatible or even mutually exclusive. For example, individuals or collectives may
prefer exploration, growth and development of persons, society and life in general,
or, alternatively, stability, safety and preservation. Often such preferences cannot
be accommodated within a single value system and represent different perspectives
towards the same phenomena. The society of mind is therefore the multiplicity of
interacting embodiments of worldviews, representing different value systems and
points of view. No single value system or worldview can be considered dominant or
"objectively" better, while the resilience and growth of the global system depends on
the mode of interaction among many worldviews rather than any isolated properties
of one of them.

""We employ the simplification of a well defined observer - observed distinction (i.e. agent - envi-
ronment) at this point mostly for didactic purposes. Actually, the distinction between observer and
observed itself individuates during the process of synthetic cognitive development (see Section 3.3.3
on page 74). For the in-depth analysis of the individuation of agent-environment boundary, please
refer to Section 2 of Weinbaum and Veitas (2017b).

2For an in-depth definition of sense-making concept, please refer to Section 1.3 of Weinbaum and
Veitas (2017a).
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2.4 Summary of the chapter

This chapter is a condensed view of the modern quest to understand intelligence
with a perspective informed by the philosophy of individuation and open-ended
intelligence — the subject that will be comprehensively discussed in Chapter 3. The
purpose of such a layout is, first of all, to show how established theories and modes
of thinking within broadly multidisciplinary domains raise issues from their own
perspectives which we are going to address with the metaphysical framework of
open-ended intelligence on a highly integrated and abstract level. It invites the
reader to appreciate the further introduced philosophical framework as a fertile con-
ceptual lens allowing these issues to be seen in a perspective which permits new
ways of theoretical understanding as well as the pragmatic research and develop-
ment of intelligent systems.

First, we introduced Al research perspectives, or currents, and position them on
the axis of freedom and constraint according to how much change they allow for an
intelligent system (or any human-designed complex adaptive system). Second, we
went on to introduce the evolutionary perspective to the process of becoming intel-
ligent in terms of biological and epistemological evolution, interactive co-emergence
of structural and functional hierarchies in complex systems, and information-theoretical
interpretations. Third, we discussed frameworks and insights from cognitive sci-
ence, neuroscience and other interdisciplinary domains. Altogether, this chapter
presents main concepts, techniques and currents of theoretical and practical thought
that will allow us to consolidate the model of open-ended decentralized computing
in Chapters 4 and 5.

Concretely, in this chapter we have formulated a list of principles and broad
requirements for the cognitive architecture:

i. Such architecture should allow for the emergence of identities of higher or-
der cognitive agents from the interaction of lower level heterogeneous compo-
nents.

ii. It has to account for at least partial ability of the emergent cognitive agents to
perform the selection for relevance operation of modelling the sensory input
of their environment.

iii. An evolutionary process implies the appearance of order (i.e. asymmetry) out
of disorder (i.e. symmetry) in terms of emergence of functional and structural
hierarchies as control structures.

iv. A cognitive system, as a complex adaptive system, balances between disorder
and order, which are equivalent to internal symmetry and asymmetry.

v. Complex adaptive systems are such because they do not have a single or sta-
ble control structure, but collective control structures (e.g. heterarchies). The
emergence of such collective control is equivalent to the stabilization of com-
munication patterns among independent elementary units which make up the
system.

vi. Stable or at least partially persistent patterns define a structure which gives
rise to a function of the overall system and mediates emergence of further
structures and functions. By that, progressive determination of structure and
function is achieved in an evolutionary developmental way which underlies
the self-modifying nature of a cognitive architecture.
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The next chapter introduces and discusses the open-ended intelligence frame-
work and the philosophy of individuation which binds the still somewhat isolated
principles and requirements for the computational model into an integrated theory.
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Chapter 3

Open-ended intelligence

The chapter is based on the following published papers:

Weinbaum (Weaver), D., Veitas, V. (2017). Open ended intelligence: the individuation of
intelligent agents. Journal of Experimental Theoretical Artificial Intelligence, 29(2), 371-396.
https:/ /doi.org/10.1080/0952813X.2016.1185748

Weinbaum (Weaver), D., Veitas, V. (2017). Synthetic cognitive development: where intelli-
gence comes from. The European Physical Journal Special Topics, 226(2), 243-268.
https:/ /doi.org/10.1140/ epjst/e2016-60088-2

Veitas, V., Weinbaum, D. (2017). Living Cognitive Society: A “digital” World of Views.
Technological Forecasting and Social Change, 114, 16-26.
https:/ /doi.org/10.1016/j.techfore.2016.05.002

3.1 Introduction

In Section 2.1 we identified the major Al research perspectives and types of intelli-
gence they explicitly or implicitly assume, and positioned them on the axis of free-
dom and constraint. Recall that the freedom and constraint continuum ranks concepts
of intelligence according to how much variety and change they allow. Intelligence
manifested as a deterministic computer algorithm (or a rule-based reasoning engine)
occupy the rightmost part of the continuum, allowing no possibility for the algo-
rithm to "decide" its course of action — since all its goals and behaviours are encoded
into rules that are pre-defined before the algorithm starts running. Open-ended in-
telligence, occupying the leftmost part of the spectrum, allows for any conceivable
behaviours, choices of goals and forms of embodiment powering these choices. The
most interesting manifestations of intelligence are arguably positioned in between
these two extremes, embodying a unique synthesis of both freedom and constraint
able to comprehend, operate and persist in specific environments. The synthesis of
freedom as an unconstrained possibility space and constraint as a single actuated
possibility is a process that allows and guides the evolutionary development of an
individual. The goal of this chapter is therefore twofold:

e First, introduce the philosophical framework which allows and promotes look-
ing at all manifestations of intelligence as snapshots (or projections) of the fluid
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process that open-ended intelligence is. A complete account of open-ended in-
telligence as a metaphysical framework is developed by Weinbaum (2018).

e Second, emphasize, describe and operationalize the abstract mechanism of
open-ended intelligence — the process of becoming intelligent — in terms of
progressive determination of constraints. This mechanism allows for concrete
types of intelligence to be crystallized from the unbounded space of possibili-
ties and manifested in observable forms. The operationalization should allow
for a pragmatic perspective that guide a design inquiry into engineering ar-
tificial general intelligence. The pragmatic aspects will gradually gain more
weight in Chapters 4 and 5.

At the roots of our conceptual framework, based on the open-ended intelligence
philosophy;, is the principle that intelligence is a process which creates order from disorder.
Compare this principle to the more conventional way of thinking that intelligence is
a process of finding the correct order of nature and environment — which starts with the
assumption that the correct order exists in the first place. The line of thinking within
the scope of this work avoids the question of whether nature actually has inherent
order and structure. Rather, it adopts the epistemological position while taking into
account that any real world intelligence is necessarily embodied, situated and hence
constrained by limited resources. It means that from the perspective of an entity that
is in the process of becoming intelligent, the order of the universe (or the structure
of this entity’s immediate environment) is subjectively unknowable and has to be
created within the cognitive system of that entity. In order to understand what in-
telligence is and how to model it, it therefore makes sense to assume a disordered
universe and entities (agents) trying to make sense of it by creating order: indi-
vidually in their own cognitive systems and collectively through their shared local
environments.

The conceptual shift required by this attitude is well described by the three differ-
ent avenues of approaching the question how does form arise? formulated by Oyama
(2000): "preformationist”, "interactionist" and "constructivist interactionist” (see page
33). The first two assume a priori sources of information. These sources get morphed
into concrete forms by an evolutionary process that is understood essentially as a
process of information transfer (Zenil et al., 2012). The "constructivist interactionist"
avenue does not assume the existence of a priori information preceding the process of
evolution and development, since the information that describes forms co-develops
along complex processes that give rise to these forms. We are taking the "construc-
tivist interactionist" avenue as cardinal and the first two as special cases of it. An
attempt to visualize the differences and relations among the three avenues is pro-

vided in Figure 3.1.

With a considerable concession towards simplification, Figure 3.1 illustrates how
the "preformationism" and "interactionism" are seen as reductions of the "construc-
tivist interactionist" schema'. The "preformationist" (3.1a) attitude amounts to view-
ing a process of development within a bounded time frame [¢1, t2] and therefore ob-
serving already individuated structure Sy as-if a priori to the operation O3 and oper-
ation Os as-if goal directed with respect to the informational content of the structure

!The didactically necessary simplification involves omitting the aspect of the progressive determi-
nation principle that requires operation O; to be prone to change depending on the immediate struc-
ture S; on which it operates. This simplification allows the point we are making here to be emphasized.
For a more complete treatment of progressive determination, see Section 3.2.4 on page 70.
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S3. The "interactionist” attitude (3.1b) follows the same schema yet allows interac-
tions of multiple operations O3 4 on multiple as-if a priori structures S 4 that lead to
the as-if goal state S3. "Constructivist interactionism" does not look at the process of
development in terms of bounded time, and therefore informational content of all in-
termediate structures Si 2 3 4. progressively develops via interaction with operations
O1,2,3,4,5.. and does not lead to any goal state. Since in all real world situations we
have to consider time and space constraints, the "preformationist" and "interaction-
ist" attitudes in the great majority of pragmatic cases "just work". Yet when dealing
with complex self-organizing systems with a large degree of non-determinism these
attitudes reach their limits. In this thesis, above all in Chapter 4 and Chapter 5, we
will try to see how "constructivist interactionism" can help to deal with these limits
while still keeping a pragmatic attitude.

Let us now see how the described conceptual shift applies and informs the quest
for understanding intelligence and designing machine intelligence. It seems cus-
tomary and common-sensical to posit a single (albeit possibly complex) criterion
and position intelligence of humans, other known biological organisms, and artifi-
cial or natural (yet maybe not terrestrial) beings along a single dimension (see Figure
3.2). A single dimension is basically conceived to measure how well different types
of intelligence fare in searching for structure and order of their environments.
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FIGURE 3.2: The universe of possible minds (Yampolskiy, 2015)

positioning different kinds of mind and intelligence in an ab-

stract "optimization space" allowing them to be projected on a
single axis, first proposed by Bostrom and Ryan (2015).

This almost archetypical view of intelligence implies quite a few premises that
are often taken for granted. The first premise is that reality has an implicit struc-
ture (Zenil et al., 2012). The second premise is that intelligence has evolved for and
therefore is an instrument and means-to-ends for the survival of an organism. The
third and most important premise is that the environments (sensory spaces) to which
intelligences adapt by interacting do not change due to the interaction (i.e. are non-
reflexive). It does not take many logical steps to conclude from these assumptions
that intelligence is a complex convergent optimization process for the sake of sur-
vival that tries to adapt to the actual structure of reality and where optimization
criteria are extrinsically and objectively defined. It also promotes "understanding"
intelligence in terms of comparing and ranking different embodiments by how well
they perform. Following this logic, the "higher" the intelligence is, the more capable
it should be at finding and adapting to the structure of reality faster, better and more
efficiently.

A number of theories and scientific perspectives, introduced in Chapter 2, chal-
lenge at least some of these premises in important ways. Evolutionary develop-
ment (see page 31), niche construction (page 32), developmental systems theory
(page 33) and perceptual control theory (page 39) all show complex relationships
between organism, a cybernetic system and environment that goes beyond adap-
tationist paradigm. Additionally, ecological rationality (page 46) proposes a way
to think of intelligence as subjective in relation to immediate environments and se-
lective sampling of effective sensory spaces. The rate-distortion theory (page 46)
points to the information-theoretical account of selection for relevance aspect in a
perception-memory system where an organism has a say as to which part of sensory
input it discards in order to make sense of it. The concept of open-ended intelligence
provides a framework of distributed systemic cognition including an integrated phi-
losophy of how to think about intelligence that transcends adaptionist paradigms
and goal directed behaviour (see Figure 3.3). In this chapter we introduce the main
tenets of this philosophy and discuss its aspects relevant to the design inquiry into
understanding (and engineering artificial) intelligence.
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FIGURE 3.3: The scaffold of a concept of open-ended intelligence with
complexity thinking as a ground and evolution, cognition and self-
organization as pillars embedded into the ground. Intelligence gets
bootstrapped through dynamic interaction of all these elements in an
open-ended way. Adapted from Weinbaum (2018).

3.2 Theory of individuation

The philosophy of individuation by Simondon (1980, 1992, 2005, 2009) opposes the
hylomorphic schema which posits the dichotomy of form and matter and sees the
form, the matter, the objects and the relations among them individuating together
without any primary principle defined prior to this individuation. It understands
an individual from the perspective of the process of individuation rather than the
other way around. An individual is a metastable phase in a process and is always in
possession of not yet actualized and not yet known potentialities of being:

Individuation must [..] be thought of as a partial and relative resolution manifested in
a system that contains latent potentials and harbors a certain incompatibility within
itself, an incompatibility due at once to forces in tension as well as to the impossibility
of interaction between terms of extremely disparate dimensions (Simondon, 1992).

An individual that is brought forward via this process is never a complete entity
but rather an intermediate state of becoming which stands out from its environment
just enough to be identified by an observer and possibly by itself. Such an individual
emerges only via relations to its immediate environment, which consists of other
individuating entities (together constituting a preindividual):

The relation is not an accidental feature that emerges after the fact to give the substance
a new determination. On the contrary: no substance can exist or acquire determinate
properties without relations to other substances and to a specific milieu. To exist is to
be connected. This philosophical proposition allows Simondon to establish the scope
of his project: to reconcile being (I’étre) and becoming (le devenir) (Chabot, Krefetz, and
Kirkpatrick, 2013, p. 77).

Importantly, Simondon’s theory of individuation, while being an abstract onto-
logical framework, at the same time promotes what is called “concretization” - the
explanation of the emergence of observable and graspable objects and relations in
the physical, biological, cognitive and socio-technical evolution and development
(Veitas and Weinbaum, 2017; Weinbaum and Veitas, 2017a). Simply speaking, “con-
cretization” allows us to approach the very process of emergence of order from dis-
order in an abstract way. A schematic image of this process is depicted in Figure 3.4.
It visualizes a population of independent interacting agents, initially uncoordinated
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but still exchanging signals among themselves — a preindividual. Over time, some in-
teractions may grow more frequent and possibly reciprocal, constituting to stronger,
but not yet fully persistent links between some elements. Thus a fluid individual can
be observed in the population. If certain links become persistent, a fully formed indi-
vidual with a definite structure and a boundary, separating it from other members of
population, becomes observable.

(a) preindividual (b) fluid individual (c) fully formed individual

FIGURE 3.4: Image of concretization process illustrating how

(a) preindividual consisting of a population of heterogeneous non-

coordinated agents morph into (b) fluid individual and then (c) fully

formed individual. All three are but intermediate stages of the individ-

uation process and constitute different assemblage configurations of

interacting elements p; in a population P; (see also Section 3.2.4 and
Figure 3.11).

The cornerstone of the theory of individuation is the philosophy of information,
which extends the classical information theory of Shannon (1948). Other direct de-
scendants and components of the philosophy of individuation are theory of assem-
blages, metastability and the notion of progressive determination, all central to and
required for understanding open-ended intelligence — the process of individuation
of intelligent agencies. These aspects are introduced in the following sections.

3.2.1 Philosophy of information

Recall that Shannon’s information is defined as the reduction of uncertainty of a re-
ceiver due to getting a sender’s message. This notion carries an immense pragmatic
value in thinking and designing cybernetic systems where information is extrinsi-
cally signified. Signification of information is the operation of attaching a meaning to
it that is shared and makes sense for both sender and receiver. Without signification,
there cannot be a directional information transfer, since a sender can never "know"
how and if at all a receiver will be affected by the transmitted signal.

The mathematical theory of communication considers (ibid.) an elementary unit
of information, the meaning of which is assumed to be universally defined outside
the theory and therefore there is no need to consider the problematics of its significa-
tion. This allows information to be defined in terms of intrinsic entropy of a message
— without explicit reference to sender and receiver. Thus defined Shannon’s infor-
mation is the expected information contribution of a message to the reduction of un-
certainty, which is an entropy measure H = —Xp;log,(p;), where p; is the probability
of occurrence of the i" possible value of the source symbol and 7 is the measure of
information (e.g. n = 2 in a case where information is measured in bits).
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It is surprisingly easy to overlook the aspect of signification when considering
interaction and information exchange among already individuated entities in an al-
ready individuated and defined environment — a set-up that is perfectly adequate
for engineering goal-directed cybernetic systems in a stable environment. Yet the as-
sumption of a universally defined meaning of information loses its value and power
in a developmental system, where the elements of a system are not a priori defined.
Moreover, the mathematical theory of communication actually supports the hylo-
morphic schema and makes it inescapable without challenging this assumption. The
inapplicability of Shannon’s information, which was defined explicitly to require no
reference to meaning, in this context needs no further comment apart from Shan-
non’s own words:

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently the mes-
sages have meaning; that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem (ibid.).

Interestingly, not long after the publication of Shannon’s seminal work, MacKay
(1969) noted the unfortunate consequence of this statement — that the warning has
been often forgotten and interpreted as irrelevance of notion of meaning to the whole
theory of information. It would be fair to say that this "unfortunate consequence" has
shaped the field until now.

Therefore, Simondon first and foremost extends the information theory by re-
quiring the signification of information to be individuated itself during the interac-
tion between sender and receiver. Traditional notions of form, matter and informa-
tion are revised by stripping them of ontological primacy with respect to each other.
These notions are seen as operators of a system of tensions which fuels the process
of individuation (Combes, 2013). Precisely this revision allows us to leave the hy-
lomorphic schema and embrace the open-endedness and fluidity of the process of
becoming. Oyama (2000) reconstructs almost the same revision in the domain of
developmental biology and evolution in terms of the developmental system theory
(see page 33).

Figures 3.1 (page 57) and 3.4 (page 60) partially illustrate Simondon’s extension
and its importance for the theory of individuation. In this sense, "preformationist"
(3.1a) and "interactionist" (3.1b) avenues of approaching the question of how does
form arise? correspond to the classical information theoretical perspective positing
operations Os 4 in terms of communication of the information content of structures
So.4 without considering how this information content came to be in the first place.
"Constructivist interactionism" (3.1¢c), on the other hand, considers that the infor-
mation content of all observed structures in the process have been individuating
through their developmental histories. Figure 3.4 illustrates how information indi-
viduates in the process of "concretization" in terms of a structure and a boundary of
an assemblage (and individual).

3.2.2 Assemblage theory

Assemblage theory was introduced by Deleuze and Guattari (1987) and further mod-
ified and developed by DeLanda (2006) as a philosophy of society. Latour (2007)
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further develops an actor-network theory for approaching and exploring assem-
blages of social and technical objects. Assemblage theory provides an avenue for
conceptualization of a generative model of individuation. In this, assemblages are
sub-networks of heterogeneous individuals that have established partial compati-
bility among themselves. They possess an intrinsic though metastable individuality;
an individuality that does not depend on an external observer but only on the re-
lations that have been stabilized among their internal elements. DeLanda (2006)
has developed the theory as a philosophical framework explaining the emergence
of scalable social entities such as personal networks, social organizations, markets,
cities and nation states. General premises and concepts offered by the theory are
broadly applicable to the study of societies of cognitive agents and living systems
and, notably, cognitive systems themselves as coalitions of neurons and cognitive
processes (Weinbaum, 2013; Weinbaum and Veitas, 2017b).

The process of "concretization" as schematically illustrated in Figure 3.4 corre-
sponds to the emergence of assemblages from a population of independent and in-
teracting agents (Chabot, Krefetz, and Kirkpatrick, 2013). At its original level of ab-
straction, the assemblage theory provides a direction towards formulating concrete
mechanisms of the process of individuation and becoming, i.e. emergence of objects,
systems and subsystems and their relations from an initial state of disorder. Note
that while we emphasize the emergence of entities, the philosophy of individuation
and theory of assemblages describe processes that do not have an a priori direction —
they progressively develop along with the process. Both emergence and dissolution
of assemblages, entities and different forms of individuals can be accounted for by
the same conceptual framework. Theory of assemblages can be used for explaining
non-directional processes of evolutionary development and niche construction (see
pages 31-32):

One and the same assemblage can have components working to stabilize its identity
as well as components forcing it to change or even transforming it into a different
assemblage. In fact one and the same component may participate in both processes by
exercising different sets of capacities. (DeLanda, 2006, p. 12)

Before explaining the concrete mechanisms of assemblage theory, it is worth see-
ing how it integrates the Simondonian philosophy of information. Recall from Sec-
tion 3.2.1 that Simondon extends Shannon’s information theory by requiring emitter
and receiver of a message to develop a common signification (i.e. agree on the mean-
ing) of their respective signals before transmission can be considered an exchange
of information. Information thus individuates due to the process of interaction and
drives that process further. MacKay (1969) gives an excellent explanation of the im-
pact of this requirement on the theory of information, why it is necessary beyond
mathematical communication theory, and provides an informal description of it.
The crux of his account is that the information-content of a message is defined by
its meaning, which is "a relationship between message and recipient, rather than a
unique property of the message alone". Shannon’s information theory does not ne-
glect this fact, but avoids the question of meaning altogether by explicitly assuming
its a priori existence, a luxury not possible within the framework of the philosophy
of individuation. Further, MacKay (ibid.) provides a working definition of meaning;:

[..] the meaning of a message can be defined very simply as its selective function on
the range of the recipient’s states of conditional readiness for goal-directed activity;
so that the meaning of a message to you is its selective function on the range of your
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states of conditional readiness. [...] suppose, for example, someone tells you "it’s rain-
ing". What happens? You may be immersed in a book, and may not feel inclined even
to grunt an acknowledgement. But this does not mean that your understanding of the
message has had no effect on you. If a sudden call comes for you to go out of doors,
for example, you may now be ready to reach for umbrella or mac. If someone comes
in, you are likely to ask whether he got wet; and so on. What has been affected by your
understanding of the message is not necessarily what you do — as some behaviourists
have suggested — but rather what you would be ready to do if given (relevant) cir-
cumstances arose. It is quite possible that relevant circumstances may never arise, so
that a naively behaviouristic approach would reveal no sign that you had understood
the message. It is not your behaviour, but rather your state of conditional readiness for
behaviour, which betokens the meaning (to you) of the message you heard (ibid., p.
22,24).

Following this working definition, two types of information-content are pro-
posed: metrical, which increases the reliance of the receiver on the result (used in
Shannon’s theory of communication) and structural, which enables new features to
be added to the description of the state of conditional readiness and its context. Both
kinds of information-content reduce the receiver’s uncertainty but in very different
ways. A communication beyond strictly technical cases usually includes both as-
pects.

Now, observe that an individual’s state of conditional readiness is dependent on
the structure of that individual (be it a simple system, cognitive system or a brain). In
assemblage theory an individual is a collection of lower scale elements having sta-
ble information exchanges among them. So the information-content of interaction
among elements—assemblages in a population is determined by the internal struc-
tures of these assemblages, while these structures themselves individuate as a result
of the information-content of interaction — which is precisely the subject matter of
Simondon’s philosophy of information and inseparable from the mechanism of pro-
gressive determination.

Furthermore, assemblage theory builds on the distinction between internal and
external relations which explains relations between scales in a scalable system — a
multiplicity of recursively nested populations of heterogeneous assemblages which
themselves consist of populations of yet lower level elements (see Section 3.3.2).
It also develops concepts of territorialization and deterritorialization which are re-
sponsible for emergence and dissolution of boundaries that mediate the relations of
individuals with the rest of the population environment.

Territorialization and deterritorialization

The notion of interaction between processes of deterritorialization and territorializa-
tion originated from the work of Deleuze and Guattari (1983, 1987) — first in the
context of socio-economics of production, and then in relation to dynamical systems
theory and self-organizing material systems. DeLanda (2006) applies the concept
when developing assemblage theory as one of the dimensions / axes along which
the specific assemblage is defined. Such a dimension delineates variable processes
in which components of a system become involved. The involvement can stabilize
the identity of an assemblage by increasing the degree of internal homogeneity and
sharpness of assemblage boundaries — in which case it is referred to as territorial-
ization. Or, it could destabilize the assemblage by decreasing its homogeneity and
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blurring the boundaries — a case of deterritorialization. The main mechanism of terri-
torialization is the formation of habitual repetition, providing the assemblage with
a stable identity. The mechanism of deterritorialization is the breaking of habits,
which effectively influences and changes an identity (Smith and Protevi, 2013). The
process of "concretization" (Figure 3.4 on page 60) is equivalent to territorialization,
which is further elaborated by Figure 3.5:

_assemblage in P°
and element p5+1 in Pst1

S
population elements pj

territorialization deterritorialization

FIGURE 3.5: Illustration of territorializaton and deterritorialization

dynamics within a population P* of interacting elements p; on a sin-

gle dimension. Assemblages individuated in population P° may be-

come elements on a higher scale — a population P5*! (see Figure 3.11
in Section 3.3.2 for the elaboration of the scalable model).

Note that a population P* of elements p; of Figure 3.5 can interact on many di-
mensions simultaneously. These dimensions do not need to be synchronized — there-
fore the same population of elements can integrate or disintegrate at the same time in
different dimensions or form assemblages with different boundaries in each. An ob-
server making sense of such population of interacting elements selects the relevant
dimension of analysis, which is the selection for relevance aspect of model building
(see page 25).

Boundary formation

Processes of territorialization and deterritorialization give rise to asymmetry of in-
teractions among elements. Particular combinations of these asymmetries in turn
give rise to situations where some sets of elements find themselves interacting more
intensely among themselves than with other elements of a population that are not
within the set. This situation is precisely what defines an assemblage — a collec-
tion of elements separated from the rest of the population by a (more or less fuzzy)
boundary of lesser interactivity?. Boundaries effectively resolve how an assemblage
of elements interacts with its environment and delineates the emergent identity of an
assemblage as a whole. Such an assemblage with an established identity and proper-
ties — an agent — can become an element at a higher scale of individuation. Note that
boundaries defining the agent—environment distinction and the relations between
them are never entirely fixed. The functioning of any emergent agent is adaptive
and subject to change due to alternating temporal dominance of deterritorialization
or territorialization processes.

The mechanisms that are responsible for the formation of boundaries and the
bringing forth of coordinated activities in a population of agents P arise primarily

Lesser interactivity could manifest itself either via reduced intensity of interactions or fewer di-
mensions across which interaction takes place.
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from the agents’ intrinsic capabilities to affect and be affected by each other. Specific
characteristics of these interactions, e.g. their frequency, synchronization and coher-
ence, have a critical influence on the way agents are connected. Such influence finds
its expression in the reinforcement or suppression of connections among agents and
consequently on how strongly they may actually affect each other. This is how the
activity of agents within P progressively determines the topological organization of
the network of agents in P. The structural organization, in turn, affects the overall
function of the individual agents by selecting interactions.

Recall that the Simondonian philosophy of information (Section 3.2.1) requires
interacting elements or assemblages to signify the information —i.e. to reach mutual
compatibility of signals that are considered information in their exchange. Further-
more, information is defined as signals through which elements can affect each other.
Obviously, assemblages can be affected only by signals that permeate their bound-
aries, and therefore properties of boundaries determine signification of information.
Since boundaries of assemblages get formed in the process of territorialization and
individuation of agents, information also individuates within the same process.

Flynn (2011) provides an excellent metaphor covering subjectivity of information
when discussing Merleau-Ponty’s philosophy:

Merleau-Ponty argues that the Gestalt exists for a perceiving subject; it is not a part
of the world as it is in itself. The stimulus does not unilaterally affect the organism
in virtue of its absolute physical and chemical properties; it becomes a stimulus only
insofar as the organism constitutes for itself a vital milieu which it projects around
itself. The mouse in The Metropolitan Museum of Art is affected by the crumbs of
cookies on the floor, but not by the Veldzquez painting on the wall. In the milieu that
the mouse constitutes, the crumb is desirable and the painting does not exist (ibid.).

Finally, recall Simon’s treatment of complex adaptive systems as having a prop-
erty of near-decomposability where a hierarchical structure can be devised by dis-
tinguishing between the interactions among subsystems, on the one hand, and the
interactions within subsystems, on the other (see page 17). Assemblage theory ac-
counts for the emergence of architecture of complexity observed by Simon (1962) in
natural physical and biological systems.

Internal and external relations

As discussed, the emergence of boundaries of an assemblage brings about the dis-
tinction between (1) relations and interactions among elements "inside" the assem-
blage and (2) interactions between elements "inside" and the ones "outside", which
cross the boundary of the assemblage. Boundaries also allow us to identify and de-
scribe identities of assemblages in terms of how they are structured internally or
how they structure their interaction with the environment. In a multiplicity of re-
cursively nested populations of heterogeneous assemblages which themselves are
collectives of lower level elements, internal relations are defined as relations among
lower-scale elements within the boundaries of assemblages. External relations are
then defined as relations among elements across the boundaries of assemblages -
i.e. with elements of other assemblages in a population®. Comparative intensities
and dominances of internal and external relations within a population of interacting

The notions of external and internal relations, as used in this work, bear important differences from
relations of interiority and exteriority, which are the fundamental concepts within the philosophy of
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elements define boundaries of all assemblages in this population. A boundary of
an assemblage emerges from asymmetries of interactions first as an informational
membrane, selecting relevant information for an assembled individual and, only
then, as a structural and topological membrane (see Figure 3.6).

FIGURE 3.6: Internal
and external relations
within a population
of agents and their as-
semblages.

Consider for example a cell and a human body as assemblages at different scales.
The cell has a membrane and the human body has a skin, which, on the one hand,
are topological boundaries of these assemblages. On the other hand, they are infor-
mational boundaries, defining relations to the environment that are relevant for the
operation and persistence of each assemblage. The cell has ion gates on its mem-
brane, which allows only certain ions to pass and change the internal chemistry and
processes. The body has sensory organs which allow only certain types of environ-
mental signal to be registered by an organism — which is precisely the meaning of the
word "sense". Note that this adds an additional aspect to sense-making (see Section
2.3.8), since the development of "sense organs" is also a part of the process. Inter-
nal and external relations become more intricate in case of fluid individuals with
unclear topological boundaries and fuzzy informational membranes, such as brain
areas or even cognitive processes in a neural network. Here local asymmetries of
information exchange between elements may be the main, if not the only, avenue for
detecting and describing such fluid individuals - e.g. brain areas, social structures,
colonies of insects, flocks of birds, rhizomes etc.

The problem of detecting boundaries of fluid assemblages in a population of
interacting elements has been approached from the information theoretical perspec-
tive by the Integrated Information Theory, which originated from the works of Edel-
man and Tononi (2000) and Tononi (2004).

3.2.3 Metastability

The concept of metastability is mostly used to describe a far from equilibrium com-
plex system in terms of its movement in a stable state-space*. Such a system has a

open-ended intelligence and theory of assemblages. This is not to say that these concepts are not
related, but the precise treatment of this aspect is outside the scope of this work.

“The state space of a system is the set of all possible states in which the system can find itself. This
is a generalisation of the intuitive concept of the concrete, three-dimensional space which an organism
can explore to the abstract set of states between which a system can "move" when its properties vary
(Heylighen, 2015a, p. 69). No matter how multi-dimensional, large or even infinite a state space, it
is usually considered stable and invariable. Further, the existence of a clearly defined fitness function
and a measure of a system’s energy are often assumed. The stable state space and fitness function
together define what is called fitness, stability or energy landscape.
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landscape with many attractors while most of the time "stuck” in "shallow" attrac-
tors which may or may not represent the system’s state of least energy. A metastable
system can be easily perturbed, in which case it moves over a border of one basin
of attraction to another (Figure 3.7a). How easy or difficult it is to perturb a sys-
tem depends on the shape of its energy landscape and the precise configuration of
the system’s parameters at the moment of perturbation. For example, if the energy
landscape contains deep attractors and a system has found a bottom of one of them,
it would be comparatively difficult to perturb it. On the other hand, if the energy
landscape is shallow or a system finds itself on the border of a basin, a minuscule
perturbation could change its whole dynamics.

Walker et al. (2004) have proposed a collection of measures for describing a sys-
tem’s resilience in terms of the shape of its stability landscape (i.e. stable energy
landscape) and immediate configuration which also apply for describing metasta-
bility. A system’s state has three attributes: (1) latitude — the width of the current
basin of attraction, determining how much system parameters have to change in or-
der for it to "move" between basins; (2) resistance — the depth of the basin of attraction,
determining how easy or difficult it is to change the system and (3) precariousness —
the current state or trajectory of the system, in terms of how close it is from the bor-
der of a basin of current attractor, determining the perturbation energy needed for a
system to cross the border and change the dynamics (Figure 3.7b).

(A) “Classical” metastability: A (B) “Precariousness”: Three-dimensional stability land-

metastable state of a weaker bond (a), scape with two basins of attraction showing, in one basin,

a transitional ‘saddle’ configuration (b) the current position of the system and three aspects of re-

and a stable state of a stronger bond silience, L = latitude, R = resistance, Pr = precariousness.
(c). Adapted from Harrison (2013) Adapted from Leuteritz and Ekbia (2008).

FIGURE 3.7: Meta-stability described in terms of attributes of stability
landscape.

Weinbaum and Veitas (2017a) propose an "extended" concept of metastability
which, apart from the aspects discussed above, has a fluid fitness landscape. Recall
that a stable fitness landscape is defined by (a) a state space — relations among all
possible states —and (b) a fitness (or goal) function. A "classical" concept of metasta-
bility assumes that these two parameters are fixed as they define the identity of the
system itself. The "extended" metastability offers the possibility of describing the
dynamics of a system with fluid identity where fluid state space is influenced by
movements and interactions of its lower scale systems operating on it rather than
defined a priori. An example of a "classically" metastable system is water at 0°C
temperature. If the water is still, it stays in a liquid state (even below the tempera-
ture of 0°C), but if it is perturbed by vibration, it collapses into the state of ice. In
the framework described above, stable physical properties of water molecules de-
fine the state space at 0 °C temperature — the precarious configuration of the system
on the borderline between basins of attraction defining the liquid and solid states. A
system that is best approached by the concept of "extended" metastability is that of
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financial markets, which are an example of a sociotechnological system. Participants
of financial markets choose their actions on the basis of relative prices of stocks and
their movements. The price (and its movements) of a stock is determined by ex-
pectations of participants in the financial markets (and buy/sell actions that these
expectations get resolved to). Therefore participants heavily influence the system’s
"state-space"”, which they try to predict and act upon. Stock market crashes and bank
runs caused by no more than panic of a critical mass of participants of a system, as
well as inflated price bubbles, are examples of operation of "extended" metastability.
More generally, the fitness landscape of such a system is the product of a form of
social agreement (implicit or explicit) of participants of a system rather than defined
exogenously.

A concept closely related to "extended" metastability is reflexitivy. Reflexivity
refers to the circular relationships between cause and effect when each element both
affects and is affected by other elements. In particular, it refers to a feedback relation-
ship between observer (i.e. intelligent agent) and observed (i.e. environment): any
examination and action of agents “bend” the environment and affect the perception
and further decisions by the same agents. From its very definition, the sociotechno-
logical system is a reflexive system with a vast number of feedback loops. Reflex-
ivity, blurring the distinction between causes and effects, makes systems difficult to
analyse and predict. The contribution of reflexivity to the dynamic properties (e.g.
fragility — see Section 2.2.4) of a system depends on the kind of feedback mechanisms
that operate. A negative feedback has a stabilizing effect on the system’s behaviour
as it resists any change in the state of the system. This is not the case with positive
feedback, which has the opposite effect of destabilizing the system by amplifying
any disturbance. The crucial aspect of the reflexivity property for a sociotechno-
logical system is that patterns of modelling and representation of the world have a
decisive effect on the type of feedback loops which develop in it. This is grasped by
the example of "extended" metastability when for example a stock market crash is
caused by a positive feedback: a price of a stock randomly fluctuates down which
may bring stressed traders to sell that stock because they predict a further decrease.
Which indeed becomes a self-fulfilling prophecy: each sale order further reduces the
price and drives an avalanche of sale orders which may eventually crash the stock
market.

Walker et al. (2004) formulate the concept of panarchy to account for the reflexive
nature of a complex metastable system in terms of its resilience. Panarchy considers
how latitude, resistance and precariousness attributes are influenced by the scales
above and below the focal scale of a complex system with scalable structure (see
Figure 3.8 on page 69). Further, Marsh and Onof (2008) try to provide a more formal
account for relations among scales in their model of stigmergic social epistemology
applied to distributed cognition. They propose a modified particle swarm algorithm
where the global fitness function f; is defined as dependent on the actual configura-
tion of particles at time ¢ within the state space:

[..] this would amount to having the moves made by the individuals (either each indi-
vidual’s trajectory, or perhaps only the evolution of the group’s best position) have an
impact upon the actual shape of the landscape — one could imagine these individuals’
movements causing earthquakes or landslides, for instance (ibid., p. 11).
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Weinbaum (2013) and Weinbaum and Veitas (2017a) develop an abstract model
of synthetic cognitive development based on scalable cognition and scalable indi-
viduation which conceptually describes how recursively nested scales or stratas of
assemblages emerge in the process of individuation and boundary formation. The
model is an integral part of the philosophical framework of open-ended intelligence
and will be discussed in Section 3.3.3.

In summary, (1) the "classical" metastability is the phenomenon when a system
is permanently in a configuration other than the system’s state of least energy while
the (2) "extended" metastability describes the situation when basins of attraction are
in permanent flux so that a system has no defined stable state of least energy to be-
gin with. The extended concept of metastability allows us to establish a more formal
connection between the theory of individuation and complex adaptive systems. The
"order from noise" principle of complexity science (see page 34) can be intuitively
grasped by imagining the state space in Figure 3.9a being "shaken" by an influx of
additional noise. The energy from the noise increases the probability of a system
overcoming the “saddle” configuration of local minimum and ending up in a differ-
ent basin of attraction. In the case of a fluid state space, the noise does not "shake"
the state-space, but rather changes its very configuration (see Figure 3.9b).

(A) Stability landscape.

(C) Reflexive metastabil-
ity: patterns of interac-
tion among particles can r; :
be seen as a fluid network ¢ B
structure which, in case of T
persistence, gives rise to
metastability landscape.

FIGURE 3.9: Degrees of metastability.

An important implication of this difference is that in a fluid state space we can
relate the transformations of a state space configuration to the movement of a sys-
tem in it, without positing an external source of noise or energy, as is usually done
within the framework of classical metastability. Furthermore, an extreme case of a
fluid state space would be the situation where there is no observable energy land-
scape to begin with, apart from more or less fuzzy patterns of system’s behaviour
(see Figure 3.9¢c). The relation of system’s movements in a fluid state space to the
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configuration of that state space is crucial for understanding progressive determina-
tion — the mechanism of individuation.

3.2.4 Progressive determination

Progressive determination is the process which describes the evolutionary develop-
ment of a metastable system — how the metastability (Figure 3.9b) and then stability
(Figure 3.9a) landscapes of a system are determined by the unconstrained interaction
of a population of elements with no landscape to begin with (Figure 3.9¢). Progres-
sive determination is an abstract mechanism of individuation of complex systems,
whereas it can be said that the more determined a system’s metastability landscape,
the more concrete individuality it possesses.

An extended metastable system is reflexive in that the "movement" of a system in
its energy and fitness landscape changes the landscape which recursively influences
—i.e. progressively determines — further movements of the system. Progressive de-
termination can be therefore seen as a chain of transformations where an operation
transforms a structure and a structure in turn transforms an operation (Weinbaum
and Veitas, 2017a). More formally it is represented as follows:

w91 =01 —= 5 - 09— 83— ... = 0p — Spqa...

e operation O; is a function which transforms one structure to another: S, =
O1(51);

o likewise, structure S; is a function which transforms one operation to another:
Oz = 51(01);

e note that S1 # S and O; # O; — they are different functions;

e the symbol — denotes the relations of dependency between the transformations,
so that every transformation depends on the full history of previous transfor-
mations.”

The concept of progressive determination embraces the philosophy of informa-
tion of Simondon in that information that guides reflexive processes in a metastable
system individuates within the process itself and is not in any way a priori defined
(see Section 3.2.1). In order to become coordinated, individual processes in a diverse
population first have to find and negotiate the basis for their interactions and select
"meaningful" ones while developing criteria of meaningfulness at the same time.

Stigmergy — a somewhat better known and researched concept in biology and
computer science (see page 43) — is a special case of progressive determination in
that it is an indirect, mediated mechanism of coordination between actions. In stig-
mergy the trace of an action (i.e. operation) left on a medium (i.e. structure) stimulates
the performance of a subsequent action (Heylighen, 2016). Stigmergy relies on the
cybernetic relation of agent-environment-agent-environment through ongoing and
mutual modification or conditioning. Marsh and Onof (2008) note that emergence —
a novel behaviour arising from the lower scale of a system — and immergence — an

*Le. it should not be understood as a piping of inputs and outputs through the chain of immutable
transformations.
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individual action informed by the global state / higher scale of a system — go hand
in hand and should be approached as "perpetual iterative looping" in a stigmergic
way.

Now, after establishing relations between individuation of identities, metastabil-
ity of systems made of networks of interacting elements and emergence as a result
of progressive determination of structure and function, it is the place to introduce
an important aspect of the computational approach which will be the basis of the
rest of this work — starting from Chapter 4. Our proposal is to represent the stigmer-
gic environment and the structural aspect of progressive determination by a graph
data structure implemented in a computational medium. Furthermore, we suggest
representing the operations of progressive determination and stigmergic actions as
computational processes reading from and writing to this graph data structure. Such
a framework could be said to implement a computational stigmergy or stigmergic com-
puting. Next we turn to discussing how the mechanisms of individuation, progres-
sive determination and metastability reveal themselves in the context of becoming
intelligent —i.e. individuation of cognition.

3.3 Individuation of cognition

Open-ended intelligence is manifested in concrete environments and embodiments
via the process of progressive determination described in previous sections. Re-
call the continuum of freedom and constraint where open-ended intelligence repre-
sents the unconstrained potentialities of different behaviours while a deterministic
algorithm represents the most constrained algorithmic behaviour. The freedom and
constraint continuum relates open-ended intelligence to "general" and "narrow" Al,
human-level intelligence, and deterministic algorithms by conceiving a mechanism
of progressive determination of constraints through which more observable mani-
festations of intelligence in specific situations and environments could emerge. This
is what we refer to as individuation of cognition. Figure 3.10 shows how individua-
tion of cognition relates to the philosophy of individuation and concepts discussed
above, including degrees of metastability and the process of "concretization", which
are different perspectives towards the same process.

3.3.1 Pre-, fluid and fully formed individuals

We necessarily think of intelligence in terms of its already consolidated and man-
ifested forms in concrete embodiments — humans, animals, fish, robots, fungi, so-
cieties... Yet from the perspective of open-ended intelligence, the very process of
becoming intelligent — the process of phylogenetic, ontogenetic and cognitive devel-
opment — is much more primary and important for understanding intelligence and
mind than any of its concrete and observable instantiations. Nevertheless, the pro-
cess can be looked at in terms of the structures it gives rise to. We usually refer to
such cognitive structures and, moreover, their embodiments as individuals or agents.

Looking at intelligence from the perspective of the processes of its emergence
rather than at already formed intelligent agents, allows us to see beyond the bound-
aries of nature versus nurture and environment versus organism. Actually, the dif-
ference between "nature" and "nurture"” can be observed only from the perspective
of a single point in time marking the specific stage of developmental process. Yet
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FIGURE 3.10: Individuation of cognition from the perspectives of pro-
gressive determination of constraints (Figure 2.1), stabilization of a
landscape (Figure 3.9) and "concretization" (Figure 3.4).

in terms of the evolutionary process at large, the distinction itself does not make
much sense — obviously phylogenetic processes are influenced by the environment
at least in terms of selective pressures in the process of natural selection. This per-
spective makes the distinction between agent and environment much less clear than
is usually posited both in evolutionary biology and artificial intelligence research.
Furthermore, it is said that the evolution of intelligence internalizes certain aspects
of environment to the organism thereby allowing it to adapt (see the concept of vi-
carious selector in Section 2.2.1). Yet at the imaginary start of the process, when
nothing was yet "internalized", what was the organism that could have started the
very process of internalization?

In the process of individuation, individuals are not preceded by already individ-
uated entities or principles that instruct the trajectory of their formation, but by a
state of affairs which is as yet undetermined - the preindividual. Even after an indi-
vidual has reached a relatively stable state, the preindividual is not exhausted and
persists in the individual. This is what allows its subsequent individuation or be-
coming. The unity characteristic of fully individuated beings (i.e. identities) which
warrants the application of the principle of the excluded middle, cannot be applied
to the preindividual (Weinbaum, 2015). Fluid individuals do not have clearly consoli-
dated boundaries or agency and in that sense could be understood as "not yet fully
formed". On the other hand it would not be correct to think of fluid individuals
and identities only as intermediate states in the process of formation of individuals.
Quite on the contrary, it makes sense to perceive more or less fluid individuality as
a more befitting expression of intelligence than fully formed individuals.

A study and debate around plant intelligence (Firn, 2004; Trewavas, 2003, 2004)
provides fertile insights into general intelligence, spanning all its possible manifes-
tations. Notably, it reminds a broad definition of intelligence by (Stenhouse, 1974) as
“adaptively variable behaviour within the lifetime of an individual”. The broad def-
inition does not relate intelligence to its functional expressions, such as movement,
and implementing mechanisms, such as nervous systems or brains. Intelligence is
a property that can be attributed to living organisms of all kinds and therefore is
inseparable from life. Every form of life is intelligent to an extent that allows the
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organism to "adaptively vary".

3.3.2 Scales of individuation

Simondon emphasizes that relations between individuals also undergo individua-
tion: "A relation does not spring up between two terms that are already separate
individuals, rather, it is an aspect of the internal resonance of a system of individuation.
It forms a part of a wider system" (Simondon, 2009, p. 8). In particular, individuation
never brings to light an individual in a vacuum but rather an individual-milieu dyad
that defines the boundary between an individual and its environment (see Section
3.2.2). This dyad contains both a system of distinctions and a system of relations.
The individual and its milieu reciprocally determine each other while developing as
an integrated system wider than the individual (Weinbaum and Veitas, 2017a).

Notions of individual-mileau dyad, boundary and environment bring forth the
image of scales and relations among them. An individual is identified and under-
stood first and foremost as a part of a larger whole, which is the environment. Yet
the individual itself is comprised of smaller scale components and an ecosystem
of internal boundaries. The concept of different interacting scales is inescapable in
evolutionary developmental thinking and has already been discussed in terms of
units, levels of selection and interactions between them (see Section 2.2.2), hierarchi-
cal evolution (see page 16), meta-system transition (see page 20) and control system
hierarchy within perceptual control theory (see page 39) as well as the panarchy
model in the metastability context (see Figure 3.8). The model of scales of individu-
ation is a conceptual umbrella, providing a philosophical ground for these notions
in the context of open-ended intelligence.

In this model (see Figure 3.11), individuation is a process that takes place at mul-
tiple scales, both structural and functional, of the individuating system. We describe
the model at some scale S, where we observe a population of agents P;. Every agent
in Py is a product of self-organization into assemblages of simpler agents at the lower
scale S — 1. Similarly, super-agents A’ that emerge at scale S are the elements at the
higher scale S + 1. The individuation of agents, therefore, is taking place simulta-
neously at multiple scales. In most cases, lower scale agents must have more stable
properties than higher scale agents. Instability of agents at lower scales would make
higher level organization much less probable — see the probabilistic consideration in
terms of two watchmakers by Simon (1962) (see page 16 for a classical example).

Scales differ not only structurally but also temporally. As a cognitive system
individuates, complex objects emerge and their interactions may become slower in
comparison to their lower scale components. Generally, the relative frequency of
interactions at scale S is lower than those at scales lower than S and faster than the
frequency of interactions at scales higher than S.

Following Simondon’s understanding of information (see Section 3.2.1), as new
individuals A% emerge at scale S, new information is being created. This informa-
tion is expressed in the structural and functional distinctions that become apparent
at that scale. Whatever remains incompatible among the agents of the lower scale
does not get expressed in the emergent new structures. Across multiple scales of
individuation, these incompatibilities remain as the preindividual.

Scales of individuation provide a conceptual tool for a holistic perspective which



74 Chapter 3. Open-ended intelligence

I
I
it
|
I

2

i

)
I
I
s
I
I
I

1

|

|

|
1
|

|

|

|

|

S+1

FIGURE 3.11: Relationship among sca<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>